

**Technology That Separates** 

# TEST REPORT OF THE ENVIRONMENT 21 UNISTORM

### Test Report #<u>ENV21 – TR – 071031</u>

**ENVIRONMENT 21 AUTHORIZATIONS** 

Jeffrey Benty Manager, Sales and Marketing Stormwater Specialist Paul Rowe, P.E. Director, Engineering



Technology That Separates

### TEST REPORT OF THE ENVIRONMENT 21 UNISTORM

### Test Report #<u>ENV21 – TR – 071031</u>

**ENVIRONMENT 21 AUTHORIZATIONS** 

Jeffrey Benty

Manager, Sales and Marketing Stormwater Specialist

IN Paul Rowe, P.E.

Director, Engineering

As submitted to the Ohio State Department of Transportation

#### INDEPENDENT EVALUATION OF THE UNISTORM

- An independent evaluation of the Unistorm model testing was made as follows:
  - The test procedure and model set-up were reviewed and approved prior to the start of the testing.
  - Inspection during the testing was conducted on a periodic basis.
  - The data obtained from the testing was reviewed and approved.
  - The report for submission was reviewed and approved.

REVIEWED AND APPROVED BY Paul D. McCarthy, P.E.

NYS License #074478 PDM Engineers 115 Grandview Terrace Batavia, NY 14020 585-345-1159



### **REPORT SUMMARY**

This report outlines how the Environment 21 Unistorm achieves water quality objectives for Stormwater Treatment Systems.

The Unistorm model achieved average water quality efficiencies of 81.6% for TSS removal of OK - 110 sediment. It retained 100% of the floatables and hydrocarbons. In addition, the Unistorm successfully passed the scour test by retaining >99% of the captured sediment during peak flow conditions.

The testing parameters, results, and summary for the Unistorm are in the following report.

It is our recommendation that the Environment 21 Unistorm be used as an approved Proprietary Best Management Practice (BMP) for Stormwater treatment.



### TABLE OF CONTENTS

#### Section

#### Page

| 1.0 | INTRODUCTION                     |                                                       | 1                |
|-----|----------------------------------|-------------------------------------------------------|------------------|
|     | 1.1<br>1.2<br>1.3<br>1.4         | Purpose<br>Scope<br>Objective<br>Verification Process | 1<br>1<br>1<br>2 |
| 2.0 | TEST                             | ING REQUIREMENTS AND SUPPORTING EVIDENCE              | . 2              |
| 3.0 | LAB TEST EQUIPMENT AND MATERIALS |                                                       | . 5              |
|     | 3.1<br>3.2                       | Equipment<br>Materials                                | . 5<br>. 8       |
| 4.0 | TEST SET – UP AND METHODOLOGY    |                                                       | 9                |
|     | 4.1<br>4.2                       | Test set – up<br>Test Methodology                     | 9<br>.10         |
| 5.0 | Test Performance and Results13   |                                                       | 13               |
|     | 5.1<br>5.2                       | Test Performance<br>Test Results                      | .13<br>.14       |
| 6.0 | CONCLUSIONS AND RECOMMENDATIONS  |                                                       | 16               |
|     | 6.1<br>6.2                       | Conclusions<br>Recommendations                        | .16<br>.16       |

#### APPENDICES

Attachment A "Unistorm Scale Model Test" Attachment B "Unistorm Scale Model Test Data Spreadsheet" Attachment C "Unistorm Installation Schematic" Attachment D "Unistorm Information Sheets"



Attachment E "Unistorm Maintenance" Attachment F "Metler-Toledo Production Certificate" Attachment G "Blue – White DigiFlo Digital Paddlewheel Meters" Attachment H "Goulds Pumps WS\_B Series Model 3886" Attachment I "Hammond Globe Valve IB418" Attachment J "Rosedale High Capacity Filter Bags". Attachment K "Advantech Certificates of Compliance" Attachment L "U.S. Silica Product Data" Attachment M "Lab Model Pictures"



#### 1.0 INTRODUCTION

1.1 Purpose

Environment 21 is an established company that has been in business for over ten years. Environment 21 is based out of East Pembroke, NY (Buffalo Metro Area) and markets products worldwide. Environment 21 has successfully obtained governmental product approvals and, as the company grows, is continuing to obtain approvals throughout the world. It is with this intent that Environment 21 is seeking approval of the Unistorm for use as a stormwater treatment.

#### 1.2 Scope

This test report is meant to detail the testing and verify the performance of the Environment 21 Unistorm.

#### 1.3 Objective

The testing described in this report is intended to demonstrate the Environment 21 Unistorm's effectiveness in removing pollutants from stormwater runoff under intended applications. It was performed according to an Environment 21 approved protocol, see Attachment A "Unistorm Test", and objectively measured the Environment 21 Unistorm's treatment technology in relation to the claims made by Environment 21. Simulated stormwater runoff flows with known, quantified constituents were passed through the model. The simulated pollutants were measured using a mass balance approach for the Total Suspended Solids (TSS) and floatable debris capture. A deductive approach, using measurable observations, was applied for the scouring/re-suspension and hydrocarbon capture tests. The data obtained from the testing was duly recorded, analyzed, and compiled into a spreadsheet; see Attachment B "Unistorm Test Data Spreadsheet". The science and performance of the Unistorm in a vault or round shape is identical. This is shown, and proved, with Stokes Law and clarifier technology equations. Therefore a model of a Unistorm vault configuration was used in this testing.



- 1.4 Verification Process
  - 1.4.1 Planning Environment 21 established the methodology (procedures, data gathering and analysis, etc.), personnel roles and responsibilities, site description, materials and equipment, and schedule of the testing during the planning stage.
  - 1.4.2 Testing The test conditions were established and the test procedure written at the onset of this phase. The tests were then performed and the data was gathered.
  - 1.4.3 Data Analysis and Reporting During this final stage, all of the test data was analyzed and this report generated for approval.
- 2.0 TESTING REQUIREMENTS AND SUPPORTING EVIDENCE
  - 2.1 The testing protocol was established based on meeting the USEPA requirements after site construction has been completed and the site is permanently stabilized. This includes reducing the average annual total suspended solid (TSS) loadings by 80 percent. For the purposes of this measure, an 80 percent TSS reduction is to be determined on an average annual basis so as to reduce the post-development loadings of TSS so that the average annual TSS loadings are no greater than predevelopment loadings and, to the extent practicable, maintain post-development peak runoff rate and average volume at levels that are similar to predevelopment levels.
  - 2.2 The following are the design claims for the Unistorm Structure. The documentation, or location in this test report of the documentation, which provides evidence to support these claims, as needed, is included in **bold** with each respective claim.
    - 2.2.1 The Unistorm is a pre-cast concrete structure and requires no other materials as major components.

## See Attachment D, "Unistorm Information Sheets", of this report.



2.2.2 The Unistorm is capable of being placed in an off-line configuration.

#### EVIDENCE: See Attachment C, "UNISTORM INSTALLATION SCHEMATIC", for the design detail that illustrates Unistorm off-line configuration.

2.2.3 The Unistorm provides 80% capture of the total suspended solids at the water quality flow discharges shown in Table 1. Larger sizes are available to accommodate larger flow rates. These units are sized for a Surface Overflow Rate (SOR) of  $\leq$  28 GPM/ft<sup>2</sup>.

#### **EVIDENCE:** See section 5.2.1 and "INDEPENDENT EVALUATION OF THE UNISTORM EFFICIENCY sheet at the beginning of this report.

2.2.4 The Unistorm captures all free floatable oil.

#### **EVIDENCE:** See section 5.2.3 of this report.

2.2.5 No scour and no re-suspension of material previously collected will occur in the Unistorm.

#### **EVIDENCE:** See section 5.2.4 of this report.

2.2.6 The Unistorm has a sediment storage capacity (shown in Table 1).

## **EVIDENCE:** See Attachment D, "Unistorm Information Sheets", of this report.

2.2.7 The Unistorm has a water-lock feature to prevent the introduction of trapped oil and floatable contaminants to the downstream piping during routine maintenance.

### **EVIDENCE:** See Attachment D, "Unistorm Information Sheets", of this report.



2.2.8 The Unistorm has direct access to the sediment and floatable contaminant storage chambers. It provides a maximum distance of 36 inches (915 mm) from the interior wall to the outside edge of the access hole. Additional access holes are furnished at a maximum spacing of 66 inches (1675 mm) measured from the center of access hole to the center of access hole.

### **EVIDENCE:** See Attachment D, "Unistorm Information Sheets", of this report.

2.2.9 A confined space entry is not a requirement for routine maintenance of the Unistorm.

# **EVIDENCE:** See Attachments D, "Unistorm Information Sheets", and E, Unistorm Maintenance", of this report.

2.2.10 No special tools or attachments are required to provide routine maintenance, with a vacuum pumping truck, of the Unistorm.

## **EVIDENCE:** See Attachment E, Unistorm Maintenance", of this report.

2.2.11 The Unistorm has a minimum access of 24 inches (610 mm) in diameter.

## **EVIDENCE:** See Attachment D, "Unistorm Information Sheets", of this report.

2.2.12 The Unistorm is capable of supporting a traffic load of H-25 and a dead load as required in the plans.

# **EVIDENCE:** The Unistorm is a pre-cast concrete structure which can be built to support a traffic load of H-25 and a dead load as required in the plans.



2.2.13 The Unistorm is completely housed within one structure excluding a structure containing diversion weir (for offline configuration) and necessary structures to ensure connectivity to the sewer trunk, if applicable.

# **EVIDENCE:** See Attachment D, "Unistorm Information Sheets", of this report.

#### 3.0 LAB TEST EQUIPMENT AND MATERIALS

- 3.1 Equipment
  - 3.1.1 Test Model

The Unistorm Test Model measured 1' x 2' (0.3 m x 0.6 m) and was constructed of clear acrylic to provide durability, yet to allow visual observations of the testing.

#### 3.1.2 Weigh Scale

A new Metler-Toledo® Balance Toploader (Model XS4002S) was purchased for product testing. The first time this scale was used was for this testing. This particular model was ordered because it provides the precision desired for lab-scale testing, it is made for harsher environments, and the scale was ordered with constant self calibration – Fully Automatic Calibration Technology® (FACT) – to guarantee accuracy. See Attachment F, "Metler-Toledo Production Certificate", of this report.

#### 3.1.3 Flow Monitor

The flow monitor used was a Blue – White® Meter Model # F – 1000 Digi – Flo Paddlewheel. The unit was supplied with molded fittings for 2" NPT applications. It reads out in GPM with a range of 0.4 to 300 GPM. See Attachment G "Blue – White DigiFlo Digital Paddlewheel Meters" technical data sheet.



#### 3.1.4 Water Supply Pump

The water supply pump used was a Goulds® Heavy Duty Sewage Pump, Model 3886. This is a fully submergible pump with a 2" NPT discharge. It has capacity up to 160 GPM and total head up to 26 feet TDH. See Attachment H "Goulds Pumps WS\_B Series Model 3886" technical data sheet.

#### 3.1.5 Gravity Feeder

The gravity feeder (used for all feeds) is a polyethylene funnel with a self-cleaning polyethylene stopcock valve, Star Brite Model 37210. This feeder was selected because, due to the valve design, it consistently supplies accurate dispensing without moveable parts (i.e., gears, motors, etc.).

#### 3.1.6 Pipe

The piping used for the lab scale configuration was standard 2" schedule 40 PVC pipe purchased locally from a building supply vendor. The pipes were cleaned with PVC cleaner and glued with PVC glue.

#### 3.1.7 Graduated Cylinder

A 2000 ml polymethylpentene graduated cylinder was used as a measuring device for this testing. The graduations are into 20 ml subdivisions. This cylinder meets ISO 6706 criteria.

#### 3.1.8 Weighing Dishes

In order to weigh and transfer material polystyrene weighing vessels were used. They have a capacity of 280 ml and are antistatic.



#### 3.1.9 Water Flow Control

The water flow through the scale model was controlled with a Hammond® 1" Class 125 Bronze Globe Valve. See Attachment I, "Hammond Globe Valve IB418".

#### 3.1.10 Filter

The filter used for the scouring/re-suspension and hydrocarbon capture tests was a 10 micron filter bag, Rosedale® Model #PE-10-P-9-S. See Attachment J "Rosedale High Capacity Filter Bags".

#### 3.1.11 Sieves

Advantech sieves were used in this test for sediment gradation. The sieve sizes used were: 53  $\mu$  (ASTM E – 11 – 95 #270), 75  $\mu$  (ASTM E – 11 – 95 #200), 90  $\mu$  (ASTM E – 11 – 95 #170),106  $\mu$  (ASTM E – 11 – 95 #140),125  $\mu$  (ASTM E – 11 – 95 #120),150  $\mu$  (ASTM E – 11 – 95 #100), and 212  $\mu$  (ASTM E – 11 – 95 #70). See Attachment K for each sieve's individual "Advantech Certificates of Compliance".

#### 3.1.12 Sediment Drying Chamber

A Sharp® Carousel® microwave oven, model #R - 9H84B, was used for drying the wet sediment.

#### 3.1.13 Ancillary Equipment

The remaining equipment used, which was not critical to the test, is as follows:

3.1.13.1 Submersible recirculating pump.



- 3.1.13.2 Two (2) 350 gallon totes for water supply and catch reservoirs.
- 3.1.13.3 Plastic five gallon pail
- 3.2.13.4 Standard hand tools
- 3.1.13.5 3/8" Tygon® tubing

#### 3.2 Materials

3.2.1 OK – 110

The OK – 110 silica used in this test was purchased from U.S. Silica. See Attachment L, "U.S. Silica Product Data".

- 3.2.2 Floatable beads
  - 3.2.2.1 Large Beads

The large beads used in the floatable test were wooden Roble beads measuring approximately 0.06 in<sup>3</sup> (1.0 cm<sup>3</sup>) each and weighing approximately 0.025 oz (0.71 g each).

#### 3.2.2.2 Small Beads

The small beads used in the floatable test were wooden Roble beads measuring approximately 0.003 in<sup>3</sup> (0.5 cm<sup>3</sup>) each and weighing approximately 0.003 oz (0.09 g each).

#### 3.2.3 Hydrocarbon

The hydrocarbon used for this test was 10w - 30 oil that had been drained from an automobile engine. This oil had been used in the engine for approximately 3,000 miles. Used



automobile oil was chosen as it is the prevalent hydrocarbon found in urban storm water run-off.

3.2.4 Filters

The filters used to filter the sediment siphoned from the lab scale model were modified Shop-Vac® high efficiency filter bags, model 906-71. These have a 98% efficiency at filtering particles 0.3 - 0.5 microns and larger.

#### 4.0 TEST SET – UP AND METHODOLOGY

- 4.1 Test Set up
  - 4.1.1 The Unistorm Test Model size and configuration was chosen for ease of adaptation to standard fittings and existing lab equipment, and its similarity to the full size Unistorm. An effort was made to prevent confusion caused by using both the U.S. Customary Units System and the Metric Units System for measurements. Both are used in this report (where practicable they are shown together) as applicable,
  - 4.1.2 2" PVC pipe and fittings, Fernco® couplings (for ease of dismantle), and 2" PVC threaded slip unions were used to make all connections between the Water Supply Pump, the Flow Monitor, the Feed Port, and the Unistorm, see Attachment M, "Lab Model Pictures".
  - 4.1.3 The Water Supply Pump was placed into one of the 350 gallon totes.
  - 4.1.4 The Flow Monitor was installed 10 pipe diameters minimum downstream of any disruptive fittings and 5 pipe diameters minimum upstream of any disruptive fittings to prevent turbulent false readings.



- 4.1.5 The Feed Port was fabricated by using a 2" sanitary tee and a 2" x 15" long PVC pipe. This design ensured proper mixing and dispensing.
- 4.1.6 The submersible recirculating pump was placed in the other tote. One end of a 1  $\frac{1}{2}$  flexible hose was installed on this pump to re-circulate water back to supply tote. The other end of this flexible hose was placed into a 10  $\mu$  filter bag in order to keep the recirculation water free of contaminants.
- 4.2 Test Methodology
  - 4.2.1 The path of a particle in water is determined primarily by two actions: the velocity of the water and the particle settling velocity. In order to portray this on a scale level geometric, dynamic, and kinematice similarities needed to be established between the Unistorm Test Model and the Unistorm Models. The geometric similarity was already established and by applying Froude Similitude the following were calculated:
    - 1 cfs = 8.08 GPM (30.59 LPM) in the Test Model
    - 2 cfs = 10.10 GPM (38.23 LPM) in the Test Model
    - 3 cfs = 11.22 GPM (42.47 LPM) in the Test Model
    - 6cfs = 8.53 GPM (32.29 LPM) in the Test Model

Prior to the Uniscreen Test, test flows were run from 2 GPM to 30 GPM in order to establish the Maximum Treatment Rate for the Unistorm Test Model. The MTR that obtained a TSS removal efficiency of around 80% for OK-110 was 18 GPM. The 18 GPM was higher than the calculated (Froude Similitude) rate. But it was chosen nonetheless as a conservative measure.

4.2.2 TSS Capture Calculations and Tests

The TSS test calculations were made as follows: Sediment feed rate tests, completed prior to the Unistorm Test, showed that there was < 4% difference noted in the removal efficiency between rates varying from 300 mg/L



to 5,000 mg/L. Since more material is captured using a higher sediment feed rate there will be more accuracy in analyzing the gradation captured. So the TSS feed rate was established at a maximum concentration of 450 mg/L of OK - 110 as the test rate. This is close to the upper end of the averaged sediment concentration found in the environment.

The scale flow rate and duration were already established at 18 GPM (68 LPM) for five minutes (see 4.2.1), so the TSS amount, per test run, was calculated as: 450 mg/L x 68 LPM x 5 minutes x 1 g/1000 mg = 153.00 g. Five tests were run with these flows. After each test run the sediment was siphoned, dried, and weighed.

The mass balance testing method was used on this test as it is currently an endorsed testing method by the University of Minnesota – St. Anthony Falls Laboratory and the Wisconsin Standards Oversight Counsel (SOC). Mass balance testing is currently being reviewed for acceptance as a standard by the American Society for Testing and Materials (ASTM) Subcommittee, C27.70.

4.2.3 The Floatables test was performed to verify the floatable trapping ability of the Unistorm. Three objects were chosen to represent floatable debris commonly found in storm water runoff; an empty soda can, a piece of Styrofoam®, and an empty clear plastic food container. The empty soda can weighed 14.84 g and measured 383.00 cm<sup>3</sup>, the piece of Styrofoam® weighed 0.58 g and measured 49.22 cm<sup>3</sup>, and the clear plastic container weighed 10.02 g and measured 179.52 cm<sup>3</sup>. The density of the empty soda can was 0.04 g/cc, the density of the piece of Styrofoam® was 0.01 g/cc, and the density of the clear plastic container was 0.06 g/cc. These objects were obviously too large to use for the Unistorm Test model so objects needed to be selected that had the same or less comparative buoyancy. Large and small beads were chosen with respective densities of 0.71 g/cc for the large beads and 0.18 g/cc for the smaller beads. The beads were less buoyant than the empty soda can, the piece of Styrofoam® and, the clear plastic container so they were considered acceptable for use.



- 4.2.4 Again, as in the floatable test, the Hydrocarbon test was performed to verify the hydrocarbon trapping ability of the Unistorm. Hydrocarbons float on water due to their comparative lower density and the tensile force of the water surface. A force of 72 dynes is required to break a surface film of water 1 cm long and thus cause "mixing "of the hydrocarbons and water. A volume of 500 ml was chosen for the test. Though this equates to a full scale spill of 387 L (HazMat situation) this amount was selected more for a factor of the effect of turbulence on a 1.2 cm thick layer of hydrocarbon on a water surface than for the scale volume.
- 4.2.5 The amount of TSS required for the no scour and no resuspension test was determined by a test run where four consecutive flows at the established test rates were run. The system was allowed to settle (i.e., residual water stopped flowing) in between the consecutive flows. This test was performed to simulate chamber loading, and thereby ascertain the amounts in the individual chambers. The recommended maintenance pump-out for the full-size Unistorms is 0.5', but they may average 1.5'. So a safety factor of an additional 44% more material (over the 0.5' maintenance level) was incorporated Based on this and the loading test the following conclusion was made as to the amounts to load in each chamber: The first chamber was filled to a depth of 6.35 cm for a volume of 2,949.7 cm<sup>3</sup>, the second chamber was filled to a depth 4.6 cm for a volume of 4,247.5 cm<sup>3</sup>, and the last chamber was filled to a depth of 2 cm for a volume of 943.0 cm<sup>3</sup>. Thus the total volume for testing was 8,140.2 cm<sup>3</sup>. A 10 µ filter bag was placed in-line after the Unistorm Test Model. This bag first was placed into water and allowed to become saturated. It was then removed, hung to drain for 5 minutes and weighed. This was repeated after each no scour and no re-suspension test to obtain accurate readings from test start to test end. Though lower concentrations of smaller particles would be found in actual treatment, the OK – 110 was not graded and adjusted prior to being used for this test.



#### 5.0 TEST PERFORMANCE AND RESULTS

- 5.1 Test Performance
  - 5.1.1 All calibrations were performed, per the test procedure, prior to the start of tests and the results were recorded on the data sheets. The calibration procedure and subsequent data are explicit enough to warrant not going into a detailed explanation, see Attachment A "Unistorm Test" and Attachment B "Unistorm Test Data".
  - 5.1.2 The TSS test was performed in six runs. A flow of 68 LPM was started and the OK – 110 was added at a rate of 450 mg/L. After each run the system was allowed to settle and the sediment was siphoned and filtered. The filter and the sediment on it were dried in the microwave oven using 70% power (840 W) for five minute intervals. The filter and sediment were finalweighed when there were no visible lumps and the weight of the filter and sediment did not change for three consecutive drying times. The sediment was then carefully poured from the filter to the sieves, graded and weighed. The filter was not brushed or scraped off as this would have yielded obvious errors. The filter, with residual sediment, was weighed and the original weight measurement of the filter was subtracted from this measurement. An average of 1.7% of the original 153.00 g was retained by the filter for each test. This residual amount was theoretically graded and added to the measurement of the trapped sediment.
  - 5.1.3 The Floatable capture test was performed in two tests of five runs each. A flow of 68 LPM was started and the beads were added at a rate of one small bead every two seconds, three large beads at the beginning, three large beads at the three minute mark of the test, and the final large bead at the four minute mark of the test. The flow was stopped at the five minute mark. The beads were left in the Unistorm Test Model and a flow of 68 LPM was established through the Unistorm



Test Model for five minutes before being stopped. This was repeated three more times for a total of four runs without feeding floatables and, with floatable feed run, comprised one test. The five runs were completed again for the second test.

- 5.1.4 The Hydrocarbon capture test was performed in one run of combined feed and flow and one test of flow only. A flow of 68 LPM was started and the hydrocarbon was added at a rate of 1.47 cc/L for five minutes and the flow was stopped. The hydrocarbon was left in the Unistorm Test model and a flow of 68 LPM was again established through the model for five minutes before being stopped.
- 5.1.5 The no scour and no re-suspension test was performed in two tests of one run each. The three chambers were loaded with OK 110 (see 4.2.5). Water was then added to just below the invert level and the system was allowed a three hour settling time. A flow of 68 LPM was started and run for five minutes before the flow was stopped. A flow of 68 LPM was again started and run for five minutes before the flow was stopped.

#### 5.2 Test Results

5.2.1 The sediment for the first TSS capture test was filtered using a filter attached over a container with a 6" diameter opening. The filter had to be changed six times due to low flow caused by clogging. This was time consuming and presented a higher chance of error with using six filters as opposed to using one filter. So for the remaining tests a larger (12") container with the same filter material was used allowing the filtration without changing the filter. This proved to reduce the error as the first test yielded a TSS removal rate of 79.71% and the remaining five tests all yielded TSS removal rates over 80%. The TSS capture test performed proved that the design of the Unistorm meets an annual removal efficiency of 80% for TSS.



- 5.2.2 The Unistorm is designed to capture floatable debris in the second chamber. Approximately 60% of the beads were still in the first chamber after the test. The remaining 40% of the beads were in the second chamber after the test. None escaped from the test model. The Floatable capture test performed proved the design of the Unistorm for capture of floatable debris.
- 5.2.3 The Unistorm is designed to capture hydrocarbons in the second chamber. Approximately 75% of the hydrocarbons were still in the first chamber after the first test and approximately 59% of the hydrocarbons remained in the first chamber after the second test. There was no evidence (oil sheen) of hydrocarbon escape from the Unistorm test model. The hydrocarbon could not be collected and quantified after the tests due to the inherent nature of hydrocarbons (i.e., coating the walls, etc.). But, since hydrocarbons will evenly spread over water, the volume could be determined by measuring the hydrocarbon layer as viewed through the clear test model. Additionally, the third chamber and the 10  $\mu$  filter bag showed no evidence of hydrocarbons, see Attachment M "Lab Model Pictures". The Hydrocarbon capture test performed proved the design of the Unistorm for capture of hydrocarbons.
- 5.2.4 The Unistorm is designed to capture TSS in the first chamber. There was no evidence OK - 110 escaped from the test model, see Attachment M "Lab Model Pictures". The third chamber and the 10  $\mu$  filter bag showed no evidence of scouring or resuspension. The no scour and no re-suspension test performed proved the design of the Unistorm for prevention of scour and/or resuspension.



#### 6.0 CONCLUSIONS AND RECOMMENDATIONS

#### 6.1 Conclusions

6.1.1 The tests were conducted and the data collected according to an Environment 21 approved protocol, see Attachment A, Unistorm Test. The collected data was analyzed, tabulated, and independently reviewed. This review shows that the design of the Unistorm meets or exceeds the stringent industry requirements.

#### 6.2 Recommendations

6.2.1 It is the recommendation of the Test Engineer/Report Author that the Unistorm be approved for applicable use. This is based on the thorough testing, documentation, and test evaluation. In the opinion of the Test Engineer the testing performed was more rigorous than required, thus ascertaining all parameters were met.

> Dino Pezzimenti Test Engineer/Report Author

> > Date



#### 6.0 CONCLUSIONS AND RECOMMENDATIONS

- 6.1 Conclusions
  - 6.1.1 The tests were conducted and the data collected according to an Environment 21 approved protocol, see Attachment A, Unistorm Test. The collected data was analyzed, tabulated, and independently reviewed. This review shows that the design of the Unistorm meets or exceeds the stringent industry requirements.
- 6.2 Recommendations
  - 6.2.1 It is the recommendation of the Test Engineer/Report Author that the Unistorm be approved for applicable use. This is based on the thorough testing, documentation, and test evaluation. In the opinion of the Test Engineer the testing performed was more rigorous than required, thus ascertaining all parameters were met.

/ Dino Pezzimenti Test Engineer/Report Author

11/01/07



# ATTACHMENT A

# **UNISTORM TEST**



#### UNISTORM TEST

#### 1.0 SCOPE

The scope of this procedure is to conduct lab-testing on a model of the Unistorm to ascertain sediment removal, no scour/ no re-suspension, hydrocarbon capture, and floatable bead capture. This data will be used as verification to satisfy regulatory requirements.

#### 2.0 PURPOSE

The purpose of this test is to verify the performance of the Unistorm using a model application. The data from this testing will be collected, evaluated, put into a test report format and then submitted as required for approval.

#### 3.0 SETUP

- 3.1 Materials needed
  - 3.1.1 One Unistorm Test Model for lab tests. This should be made of a clear material (e.g., Acrylic) for process viewing.
  - 3.1.2 Test stand with a supply pump, recirculation pump, water supply container, and water catch container.
  - 3.1.3 Sufficient water supply as determined by Test Engineer.
  - 3.1.4 A minimum of 50 kg of OK 110 silica sediment.
  - 3.1.5 A minimum of one liter of, preferably used, hydrocarbon (e.g., automobile motor oil).
  - 3.1.6 Supply sufficient floatable beads in an amount as determined by the Test Engineer.



- 3.2 Test Configuration
  - 3.2.1 Configure the test stand as directed by Test Engineer. It should allow a continuous flow of water through the Unistorm Test model. Recirculation is acceptable as long as all sediment, hydrocarbons, and floatable debris that may pass through the Unistorm Test Model are removed from the water before reuse.
  - 3.2.2 Arrange an addition port in line to the Unistorm Test Model inlet pipe. This is to allow the addition of OK-110, hydrocarbons, and floatable beads.
  - 3.2.3 Use a digital camera to record events as determined by the Test Engineer. Verify the camera is operable prior to start of tests.

#### 4.0 PROCEDURE

- 4.1 Initial Setup NOTE: THESE INITIAL STEPS MUST BE DONE PRIOR TO THE START OF THE AFFECTED TEST BUT ALL NEED NOT BE DONE PRIOR TO THE START OF THE ENTIRE TEST PROCEUDRE.
  - 4.1.1 Flow Monitor Calculation
    - 4.1.1.1 Activate the supply pump and allow the system to establish a constant flow through the Unistorm Test Model. Set the flow rate to 68 LPM (18 GPM).
    - 4.1.1.2 Use a stop watch to time this step. Place a five gallon pail in a position to collect all of the flow going through and exiting the Unistorm Test Model. Simultaneous to the start of collection, start the stop watch. Immediately stop flow to the pail at exactly ten (10) seconds per the stop watch. Stop the supply pump. Record the watch reading in the data sheets.
    - 4.1.1.3 Pour the pail contents, in increments to prevent overflow, into a graduated cylinder taking care not to spill any water. Note the amount in the cylinder and



empty the cylinder after each measurement. Total the incremental volume obtained and record this amount in the data sheets.

- 4.1.1.4 Repeat steps 4.1.1.1 4.1.1.3 two more times for a total of three initial tests.
- 4.1.1.5 Perform steps 4.1.1.1 4.1.1.3 prior to the start of each verification test. Record the readings in the data sheets.
- 4.1.2 TSS Gravity Feeder Calculation
  - 4.1.2.1 Position a container on and tare the lab scale as determined by the Test Engineer.
  - 4.1.2.2 Use a stop watch to time this step. With the TSS Gravity Feeder valve closed, place a sufficient amount of OK 110 into the TSS Gravity Feeder. Position the feeder over the container on the scale. Slowly open the TSS Gravity Feeder valve. Using the stop watch, adjust the TSS Gravity Feeder valve to establish the correct flow required in a 10 second span. Stop the flow but leave the valve as set. Record the watch reading and the flow rate in the data sheets.
  - 4.1.2.3 Repeat steps 4.1.2.1 and 4.1.2.2 two more times for a total of three initial tests.
  - 4.1.2.4 Perform steps 4.1.2.1 4.1.2.2 prior to the start of each TSS test. Record the readings in the data sheets.
- 4.1.3 Hydrocarbon Gravity Feeder Calculation
  - 4.1.3.1 Position the Hydrocarbon Gravity Feeder over a graduated cylinder.



- 4.1.3.2 Use a stop watch to time this step. With the Hydrocarbon Gravity Feeder valve closed, place a sufficient amount of hydrocarbon into the Hydrocarbon Gravity Feeder. Using the stop watch, adjust the Hydrocarbon Gravity Feeder valve to establish a flow of 25 ml in a 15 second span. Stop the flow but leave the valve as set. Record the watch reading and the flow rate in the data sheets.
- 4.1.3.3 Repeat steps 4.1.3.1 and 4.1.3.2 two more times for a total of three initial tests.
- 4.2 Sediment Removal Test
  - 4.2.1 Test at 450 mg/l Sediment Feed with 100% Flow
    - 4.2.1.1 Weigh out 153.00 g of OK 110 (accuracy to .01g). Put the 153.00 g into a container which will allow it to be easily added to the TSS Gravity Feeder. Weigh and then place the TSS Gravity Feeder into the addition port. Record the weights from this step in the data sheets.
    - 4.2.1.2 Start a water flow of 68 LPM (18 GPM) to the Unistorm Vault Scale Model. After the flow is stabilized add the OK – 110, weighed out from step 4.2.1.1, to the TSS Gravity Feeder. It should take five minutes for the TSS Gravity Feeder to empty.
    - 4.2.1.3 Stop the water flow and remove and weigh the TSS Gravity Feeder after it has emptied. Record the weight in the data sheets.
    - 4.2.1.4 Weigh a dry filter and attach it over the top of a pail. Record the weight in the data sheets. Using a piece of 3/8" Tygon ® tubing approximately 3' long; start a siphon and siphon all the captured sediment from the



Unistorm Test Model. Be careful to position the discharge end of the siphon so all the sediment is collected on the filter.

- 4.2.1.5 After all of the sediment is removed from the Unistorm Test Model allow the filter to completely drain. Remove the filter and dry it and its contents in a microwave oven; take care to keep all of the TSS on the filter. Record both the time taken to filter and to dry the TSS and filter in the data sheets.
- 4.2.1.6 Weigh the dried filter and contents. Subtract the initial weight of the empty filter from the weight of the dried filter and contents. Empty the contents into the sieve system. Record the weights obtained in this step.
- 4.2.1.7 Sieve the sediment from step 4.2.1.6 into the various gradations and weigh them separately. Determine the percentages of each gradation relative to the total. Record the weights and percentages in the data sheets.
- 4.2.1.8 Repeat step 4.2.1.1 4.2.1.7 four more times for a total of five tests. NOTE: THE UNISTORM TEST MODEL MUST BE CLEANED PRIOR TO THE START OF EACH TEST.
- 4.2.2 Consecutive Test Flows at 450 mg/l Sediment Feed with 100% Flow
  - 4.2.2.1 Weigh out four separate amounts of OK 110 at 153.00 g each (accuracy to .01g). Put them into containers which will allow them to be easily added to the TSS Gravity Feeder. Weigh and then place the TSS Gravity Feeder into the addition port. Record the weights from this step in the data sheets.



- 4.2.2.2 Start a water flow of 68 LPM (18 GPM) to the Unistorm Vault Scale Model. After the water flow has stabilized, add one 153.00 g round of the OK – 110, weighed out from step 4.2.2.1, to the TSS Gravity Feeder. It should take five minutes for the TSS Gravity Feeder to empty.
- 4.2.2.3 Stop the water flow and remove and weigh the TSS Gravity Feeder after it has emptied. Record the weight in the data sheets.
- 4.2.2.4 Repeat steps 4.2.2.2 and 4.2.2.3 three more times for the remaining measured OK 110.
- 4.2.2.5 Weigh a dry filter and attach it over the top of a pail. Record the weight in the data sheets. Using a piece of 3/8" Tygon ® tubing approximately 3' long; start a siphon and siphon all the captured sediment from the 1<sup>st</sup> chamber of the Unistorm Test Scale Model. Be careful to position the discharge end of the siphon so all the sediment is collected on the filter.
- 4.2.2.6 Allow the filter to drain after all of the sediment is removed from the 1<sup>st</sup> chamber of the Unistorm Test Model. Remove the filter and dry it and its contents in a microwave oven. Take care to keep all TSS on the filter. Record both the time taken to filter and to dry the TSS and filter in the data sheets.
- 4.2.2.7 Weigh the dried filter and contents. Subtract the initial weight of the empty filter from the weight of the dried filter and contents. Empty the contents into the sieve system. Record the weights obtained in this step.
- 4.2.2.8 Sieve the sediment from step 4.2.2.7 into the various gradations and weigh them separately. Determine the percentages of each gradation relative to the total.



Record the weights and percentages in the data sheets.

- 4.2.2.9 Repeat steps 4.2.2.5 4.2.2.8 two more times for the remaining chambers of the Unistorm Test Scale Model.
- 4.2.3 Calculate the removal efficiency for the six tests run from steps
  4.2.1 and 4.2.2. Use the following as a calculation method example: [(amount of dried filter and contents initial dry filter)/ (153.00 g)] 100 or, theoretically, [(145.00 22.6)/153] 100 = 80%. Record these calculated efficiencies in the data sheets.
- 4.2.4 Using the data obtained from step 4.2.3 average the efficiencies of the test runs. Record this average in the data sheets.
- 4.2.5 No Scour/No Re-suspension Test
  - 4.2.5.1 Fill the 1<sup>st</sup> chamber of the Unistorm Test Model to a depth of approximately 6.35 cm with OK 110, the 2<sup>nd</sup> chamber to a depth of approximately 4.5 cm, and the 3<sup>rd</sup> chamber to a depth of 1.8 cm. Add water to just below the pipe invert and allow the system to settle. Weigh the 10 micron catch filter and position it to catch all flow from the Unistorm Test Model. Record this weight in the data sheets.
  - 4.2.5.2 Start a water flow of 68 LPM (18 GPM) to the Unistorm Test Model. Run this test for five minutes and then stop the flow.
  - 4.2.5.3 Remove and weigh the 10 micron catch filter. Record this reading in the data sheets.
  - 4.2.5.4 Repeat steps 4.2.5.2 and 4.2.5.3 one more time.
- 4.2.6 Hydrocarbon Capture Test
  - 4.2.6.1 Measure 500 ml of hydrocarbons into a graduated



cylinder. Place the Hydrocarbon Gravity Feeder into the addition port.

- 4.2.6.2 Start a water flow of 68 LPM (18 GPM) to the Unistorm Test Model. Once the water flow has stabilized add the hydrocarbon measured out from step 4.2.6.1, to the Hydrocarbon Gravity Feeder. Run this test for five minutes and then stop the flow. Record the observations in the data sheets.
- 4.2.6.4 Start a water flow of 68 LPM (18 GPM) to the Unistorm Test Model and allow the flow to run for five minutes. Record the observations in the data sheets.
- 4.2.7 Floatable Debris Capture Test
  - 4.2.7.1 Start a water flow of 68 LPM (18GPM) to the Unistorm Test model. Add floatable test beads at a rate determined by the Test Engineer. Observe the action of the floatable test beads, specifically the retention in the Unistorm Test Model. Stop the flow and allow the system to settle. Record the observations in the data sheets.
  - 4.2.7.2 Do not remove the beads. Start a water flow of 68 LPM (18 GPM) to the Unistorm Test Model. Observe the action of the floatable test beads, specifically the retention in the Unistorm Test Model. Stop the water flow and allow the system to settle. Record the observations in the data sheets.
  - 4.2.7.3 Repeat step 4.2.7.2 three more times.
  - 4.2.7.4 Repeat steps 4.2.7.1 4.2.7.3 one more time.



#### UNISTORM VAULT SCALE MODEL TEST DATA SHEETS

#### 4.1.1.2 Stop watch reading:

<u>min sec</u>

4.1.1.3 Total incremental volume:

ml

4.1.1.4 Stop watch reading:

<u>min sec</u>

Total incremental volume:

ml

Stop watch reading:

<u>min sec</u>

Total incremental volume:

\_\_ml

4.1.1.5 Pre – Test Check

TSS



Stop watch reading:

<u>min sec</u>

Total incremental volume:

ml

Stop watch reading:

<u>min sec</u>

Total incremental volume:

ml

Stop watch reading:

<u>min sec</u>

Total incremental volume:

\_\_\_\_ml

Stop watch reading:

<u>min sec</u>

Total incremental volume:



ml

Stop watch reading:

<u>min sec</u>

Total incremental volume:

ml

Floatable

Stop watch reading:

Total incremental volume:

\_ml

Stop watch reading:

Total incremental volume:

\_\_\_\_ml

Scour

Stop watch reading:



Technology That Separates

<u>min sec</u>

Total incremental volume:

ml

Stop watch reading:

<u>min sec</u>

Total incremental volume:

\_\_\_ml

Hydrocarbon

Stop watch reading:

<u>min sec</u>

Total incremental volume:

ml

4.1.2.2 Stop watch reading:

<u>min sec</u>

Flow/10 sec.:

g


4.1.2.3 Stop watch reading:

<u>min sec</u>

Flow/10 sec.:

<u>g</u>

Stop watch reading:

<u>min sec</u>

Flow/10 sec.:

g

4.1.2.4 Stop watch reading:

Flow/10 sec.:

g

Stop watch reading:

<u>min sec</u>

Flow/10 sec.:



Stop watch reading:

<u>min sec</u>

Flow/10 sec.:

<u>g</u>

Stop watch reading:

<u>min sec</u>

Flow/10 sec.:

g

Stop watch reading:

<u>min sec</u>

Flow/10 sec.:

g

4.1.3.2 Stop watch reading:

<u>min sec</u>

Flow/15 sec.:

ml



4.1.3.3 Stop watch reading:

<u>min sec</u>

Flow/15 sec.:

ml

Stop watch reading:

<u>min sec</u>

Flow/15 sec.:

ml

4.2.1.1 OK – 110

g

**TSS Gravity Feeder** 

g

4.2.1.3 TSS Gravity Feeder

g

4.2.1.4 Dry Filter



4.2.1.5 Time to filter

<u>min sec</u>

Time to dry

<u>min sec</u>

4.2.1.6 Dried Filter/Contents

g

Emptied Dried Filter

g

4.2.1.7 Gradation weights and respective percentages of sediment trapped in the Unistorm Vault Scale Model:

| 70 Mesh  | g | % |
|----------|---|---|
|          |   |   |
| 100 Mesh | g | % |
|          |   |   |
| 120 Mesh | g | % |
|          |   |   |
| 140 Mesh | g | % |
|          |   |   |
| 170 Mesh | g | % |
|          |   |   |
| 200 Mesh | g | % |
|          |   |   |



|         | <u>270 Mesh g %</u>   |
|---------|-----------------------|
| 4.2.1.8 | TSS Tests             |
|         | 2 <sup>nd</sup> Test  |
|         | OK – 110              |
|         |                       |
|         | <u>q</u>              |
|         | TSS Gravity Feeder    |
|         |                       |
|         | <u>g</u>              |
|         | TSS Gravity Feeder    |
|         |                       |
|         | <u>q</u>              |
|         | Dry Filter            |
|         |                       |
|         | <u>g</u>              |
|         | Time to filter        |
|         |                       |
|         | min sec               |
|         | Time to dry           |
|         | min sec               |
|         |                       |
|         | Dried Filter/Contents |
|         |                       |



Emptied Dried Filter

g

Gradation weights and respective percentages of sediment trapped in the Unistorm Test Model:

| 70 Mesh              | g        | %        |
|----------------------|----------|----------|
|                      |          |          |
| 100 Mesh             | g        | %        |
|                      |          |          |
| <u>120 Mesh</u>      | g        | %        |
| 140 Mesh             | a        | %        |
|                      | <u> </u> | <u> </u> |
| <u>170 Mesh</u>      | g        | %        |
|                      |          |          |
| 200 Mesh             | g        | %        |
| 270 Mesh             | g        | %        |
| 3 <sup>rd</sup> Test |          |          |
| OK – 110             |          |          |
|                      |          |          |
| <u> </u>             |          |          |

TSS Gravity Feeder



**TSS Gravity Feeder** 

g

**Dry Filter** 

g

Time to filter

Time to dry

**Dried Filter/Contents** 

g

**Emptied Dried Filter** 

g

Gradation weights and respective percentages of sediment trapped in the Unistorm Test Model:

<u>70 Mesh g %</u>

<u>100 Mesh g %</u>



Technology That Separates

| 120 Mesh             | g          | % |
|----------------------|------------|---|
| <u>140 Mesh</u>      | g          | % |
| <u>170 Mesh</u>      | g          | % |
| 200 Mesh             | g          | % |
| 270 Mesh             | g          | % |
| 4 <sup>th</sup> Test |            |   |
| OK – 110             |            |   |
| g<br>TSS Gravity Fe  | eeder      |   |
| <u> </u>             |            |   |
| TSS Gravity Fe       | eeder      |   |
| <u> </u>             |            |   |
| Dry Filter           |            |   |
| g<br>Time to filter  |            |   |
| min                  | <u>sec</u> |   |

-12-



Time to dry

<u>min sec</u>

**Dried Filter/Contents** 

g

Emptied Dried Filter

g

Gradation weights and respective percentages of sediment trapped in the Unistorm Test Model:

| 70 Mesh  | g | %        |
|----------|---|----------|
|          |   |          |
| 100 Mesh | g | %        |
|          |   |          |
| 120 Mesh | g | <u>%</u> |
| 140 Mesh | g | %        |
| 170 Mesh | g | %        |
| 200 Mesh | g | %        |
| 270 Mesh | a | %        |



5<sup>th</sup> Test

OK – 110

g

**TSS Gravity Feeder** 

g

TSS Gravity Feeder

g

Dry Filter

g

Time to filter

<u>min sec</u>

Time to dry

<u>min sec</u>

**Dried Filter/Contents** 



Emptied Dried Filter

g

Gradation weights and respective percentages of sediment trapped in the Unistorm Test Model:

|         | 70 Mesh         | g | % |
|---------|-----------------|---|---|
|         | <u>100 Mesh</u> | g | % |
|         | <u>120 Mesh</u> | g | % |
|         | <u>140 Mesh</u> | g | % |
|         | 170 Mesh        | g | % |
|         | 200 Mesh        | g | % |
|         | 270 Mesh        | g | % |
| 4.2.2.7 | 1 OK – 110      |   |   |
|         | g               |   |   |
|         | UK – 110        |   |   |
|         | g               |   |   |
|         | OK – 110        |   |   |



Technology That Separates

\_\_\_\_\_g OK – 110

### g

# **TSS Gravity Feeder**

### g

4.2.2.3 TSS Gravity Feeder

4.2.2.4 2<sup>nd</sup> Run

**TSS Gravity Feeder** 

# g

3<sup>rd</sup> Run

**TSS Gravity Feeder** 

g

4<sup>th</sup> Run

**TSS Gravity Feeder** 



4.2.2.5 Dry Filter

g

4.2.2.6 Time to filter

<u>min sec</u>

Time to dry

4.2.2.7 Dried Filter/Contents

g

Emptied Dried Filter

g

4.2.2.8 Gradation weights and respective percentages of sediment trapped in the Unistorm Test Model:

| 70 Mesh    | g        | %        |
|------------|----------|----------|
|            |          |          |
| 100 Mesh   | g        | %        |
|            | -        |          |
| 120 Mesh   | a        | %        |
| 120 100311 | <u> </u> | 70       |
|            | -        | 0/       |
| 140 Mesh   | g        | <u>%</u> |



4.2.2.9

Technology That Separates

<u>170 Mesh</u> % q <u>200 Mesh</u> % g 270 Mesh g % 2<sup>nd</sup> and 3<sup>rd</sup> Chambers 2<sup>nd</sup> Chamber Dry Filter Time to filter min sec Time to dry min sec **Dried Filter/Contents** 

g

Emptied Dried Filter



Gradation weights and respective percentages of sediment trapped in the Unistorm Test Model:

| 70 Mesh                 | g        | %        |
|-------------------------|----------|----------|
|                         |          |          |
| 100 Mesh                | g        | %        |
|                         |          |          |
| <u>120 Mesh</u>         | g        | %        |
|                         |          | <u>.</u> |
| 140 Mesh                | g        | <u>%</u> |
| 170 Mesh                | a        | %        |
|                         | <u> </u> | /0       |
| 200 Mesh                | g        | %        |
|                         | _        |          |
| 270 Mesh                | g        | %        |
| 3 <sup>rd</sup> Chamber |          |          |
| Dry Filter              |          |          |
|                         |          |          |
| <u>g</u>                |          |          |
| Time to filter          |          |          |
|                         |          |          |
| min                     | sec      |          |
| Time to dry             |          |          |
|                         |          |          |
| min                     | sec      |          |
|                         |          |          |



**Dried Filter/Contents** 

g

**Emptied Dried Filter** 

g

Gradation weights and respective percentages of sediment trapped in UNISTORM Test Model:

| <u>70 Mesh</u>  | g | <u>%</u> |
|-----------------|---|----------|
|                 |   | 0.4      |
| 100 Mesh        | g | <u>%</u> |
| 100 Maab        | ~ | 0/       |
| 120 Mesn        | g | <u>%</u> |
| <u>140 Mesh</u> | g | %        |
| <u>170 Mesh</u> | g | %        |
| 200 Mesh        | g | %        |
| <u>270 Mesh</u> | g | %        |

4.2.3 Removal efficiency calculations:

(<u>g-g)/(153g)100 = %</u>



Technology That Separates



4.2.4 Efficiencies Average

<u>%</u>

4.2.5.1 Wet 10 micron filter weight

### g

4.2.5.3 Wet 10 micron filter weight

### g

4.2.5.4 Wet 10 micron filter weight

g

Wet 10 micron filter weight



| 4.2.6.3 | Hydrocarbon test observations |
|---------|-------------------------------|
|         |                               |
| `       |                               |
| 4.2.6.4 | Hydrocarbon test observations |
|         |                               |
| `       |                               |
| 4.2.7.1 |                               |
| `       |                               |
| 4.2.7.2 |                               |
|         |                               |
| 4273    |                               |
| \       |                               |
|         |                               |
|         |                               |



4.2.7.4

TEST ENGINEER SIGNATURE

DATE

# **TEST COMPLETED**



# ATTACHMENT B

# UNISTORM TEST DATA SPREADSHEET



# **UNISTORM TESTS - EQUIPMENT CALCS.**

| INITIAL<br>SETUP | WATER FLOW MONITOR CALC. |             |              |                    |               |                |
|------------------|--------------------------|-------------|--------------|--------------------|---------------|----------------|
| CALC.            |                          | т           | ME           | MONITOR<br>READING | AMT.<br>COLL. | CALC.<br>ERROR |
| RUNS             | DATE                     | START       | STOP         | GPM                | GAL.          | %              |
| 1                | 10/15/07                 | 0 min 0 sec | 0 min 10 sec | 17.80 - 18.20      | 3.06          | 2%             |
| 2                | 10/15/07                 | 0 min 0 sec | 0 min 10 sec | 17.75 - 18.20      | 3.06          | 2%             |
| 3                | 10/15/07                 | 0 min 0 sec | 0 min 10 sec | 17.80 - 18.20      | 3.00          | 0%             |

| PRE-TEST<br>CHECK | WATER FLOW MONITOR CALC. |             |              |                    |               |                |
|-------------------|--------------------------|-------------|--------------|--------------------|---------------|----------------|
| TSS               |                          | TII         | ME           | MONITOR<br>READING | AMT.<br>COLL. | CALC.<br>ERROR |
| TESTS             | DATE                     | START       | STOP         | GPM                | GAL.          | %              |
| 2                 | 10/16/07                 | 0 min 0 sec | 0 min 10 sec | 17.65 - 18.10      | 2.99          | 0%             |
| 3                 | 10/16/07                 | 0 min 0 sec | 0 min 10 sec | 17.75 - 18.20      | 3.06          | 2%             |
| 4                 | 10/16/07                 | 0 min 0 sec | 0 min 10 sec | 17.8 - 18.2        | 3.06          | 2%             |
| 5                 | 10/16/07                 | 0 min 0 sec | 0 min 10 sec | 17.8 - 18.2        | 3.06          | 2%             |
| 6                 | 10/22/07                 | 0 min 0 sec | 0 min 10 sec | 17.8 - 18.2        | 3.06          | 2%             |

| INITIAL<br>SETUP | TSS GRAVITY FEEDER CALC. |             |              |                  |                |                |  |  |
|------------------|--------------------------|-------------|--------------|------------------|----------------|----------------|--|--|
| CALC.            |                          | ТІІ         | ME           | SCALE<br>READING | TARGET<br>AMT. | CALC.<br>ERROR |  |  |
| RUNS             | DATE                     | START       | STOP         | GRAMS            | GRAMS          | %              |  |  |
| 1                | 10/15/07                 | 0 min 0 sec | 0 min 10 sec | 25.46            | 25.5           | 0.16%          |  |  |
| 2                | 10/15/07                 | 0 min 0 sec | 0 min 10 sec | 25.49            | 25.5           | 0.04%          |  |  |
| 3                | 10/15/07                 | 0 min 0 sec | 0 min 10 sec | 25.45            | 25.5           | 0.20%          |  |  |



Technology That Separates

| PRE-TEST<br>CHECK |          | TSS GRAVITY FEEDER CALC. |              |         |       |        |  |  |  |
|-------------------|----------|--------------------------|--------------|---------|-------|--------|--|--|--|
| CALC.             |          | TI                       | ME           | READING | AMT.  | ERROR  |  |  |  |
| RUNS              | DATE     | START                    | STOP         | GRAMS   | GRAMS | %      |  |  |  |
| 2                 | 10/16/07 | 0 min 0 sec              | 0 min 10 sec | 25.51   | 25.5  | -0.04% |  |  |  |
| 3                 | 10/16/07 | 0 min 0 sec              | 0 min 10 sec | 25.47   | 25.5  | 0.12%  |  |  |  |
| 4                 | 10/16/07 | 0 min 0 sec              | 0 min 10 sec | 25.47   | 25.5  | 0.12%  |  |  |  |
| 5                 | 10/16/07 | 0 min 0 sec              | 0 min 10 sec | 25.49   | 25.5  | 0.04%  |  |  |  |
| 6                 | 10/22/07 | 0 min 0 sec              | 0 min 10 sec | 25.50   | 25.5  | 0.00%  |  |  |  |

| PRE-TEST<br>CHECK | WATER FLOW MONITOR CALC. |             |              |                    |               |                |  |  |
|-------------------|--------------------------|-------------|--------------|--------------------|---------------|----------------|--|--|
| FLOAT.            |                          | TII         | ME           | MONITOR<br>READING | AMT.<br>COLL. | CALC.<br>ERROR |  |  |
| TESTS             | DATE                     | START       | STOP         | GPM                | GAL.          | %              |  |  |
| 1                 | 10/22/07                 | 0 min 0 sec | 0 min 10 sec | 17.72 -18.28       | 3.06          | 2%             |  |  |
| 2                 | 10/22/07                 | 0 min 0 sec | 0 min 10 sec | 17.75 - 18.31      | 3.06          | 2%             |  |  |

| PRE-TEST<br>CHECK |          | WATER FLOW MONITOR CALC. |              |               |       |       |  |  |  |
|-------------------|----------|--------------------------|--------------|---------------|-------|-------|--|--|--|
|                   |          |                          |              | MONITOR       | AMT.  | CALC. |  |  |  |
| SCOUR             |          | TI                       | ME           | READING       | COLL. | ERROR |  |  |  |
| TESTS             | DATE     | START                    | STOP         | GPM           | GAL.  | %     |  |  |  |
| 1                 | 10/22/07 | 0 min 0 sec              | 0 min 10 sec | 17.72 -18.28  | 3.06  | 2%    |  |  |  |
| 2                 | 10/22/07 | 0 min 0 sec              | 0 min 10 sec | 17.75 - 18.31 | 3.06  | 2%    |  |  |  |

| PRE-TEST<br>CHECK | WATER FLOW MONITOR CALC. |             |              |                    |               |                |  |
|-------------------|--------------------------|-------------|--------------|--------------------|---------------|----------------|--|
| HYDRO-<br>CARBON  |                          | TII         | ME           | MONITOR<br>READING | AMT.<br>COLL. | CALC.<br>ERROR |  |
| TESTS             | DATE                     | START       | STOP         | GPM                | GAL.          | %              |  |
| 1                 | 10/22/07                 | 0 min 0 sec | 0 min 10 sec | 17.72 -18.28       | 3.06          | 2%             |  |
| 2                 | 10/22/07                 | 0 min 0 sec | 0 min 10 sec | 17.75 - 18.31      | 3.06          | 2%             |  |



Technology That Separates

| INITIAL<br>SETUP | HYDROCARBON GRAVITY FEEDER CALC. |             |              |                |                |                |  |  |
|------------------|----------------------------------|-------------|--------------|----------------|----------------|----------------|--|--|
| CALC.            |                                  | ТІІ         | ME           | GRADED<br>CYL. | TARGET<br>AMT. | CALC.<br>ERROR |  |  |
| RUNS             | DATE                             | START       | STOP         | ML             | ML             | %              |  |  |
| 1                | 10/22/07                         | 0 min 0 sec | 0 min 10 sec | 25.00          | 25             | 0.00%          |  |  |
| 2                | 10/22/07                         | 0 min 0 sec | 0 min 10 sec | 25.00          | 25             | 0.00%          |  |  |
| 3                | 10/22/07                         | 0 min 0 sec | 0 min 10 sec | 25.00          | 25             | 0.00%          |  |  |

Ciobal Stormwater Solutions P.O. Box 55 | East Pembroke | NY 14056 Phone: 1-800-809-2801 | Fax: 1-585-815-4701 www.env21.com | enveng@env21.com

Technology That Separates

# UNISTORM TESTS - RAW DATA TSS CAPTURE TESTS

| TEST FEED TO UNIT |          |         | FILTI   | FILTER SEDIMENT |         |           | DRY SEDIMENT |         |           |
|-------------------|----------|---------|---------|-----------------|---------|-----------|--------------|---------|-----------|
|                   |          | TI      | ME      |                 | TI      | ME        |              | TII     | ME        |
| TESTS             | DATE     | START   | STOP    | DATE            | START   | STOP      | DATE         | START   | STOP      |
| 1                 | 10/15/07 | 0 m 0 s | 5 m 0 s | 10/15/07        | 0 m 0 s | 35 m 20 s | 10/15/07     | 0 m 0 s | 75 m 45 s |
| 2                 | 10/16/07 | 0 m 0 s | 5 m 0 s | 10/16/07        | 0 m 0 s | 15 m 30 s | 10/16/07     | 0 m 0 s | 55 m 36 s |
| 3                 | 10/16/07 | 0 m 0 s | 5 m 0 s | 10/16/07        | 0 m 0 s | 14 m 05 s | 10/16/07     | 0 m 0 s | 56 m 10 s |
| 4                 | 10/16/07 | 0 m 0 s | 5 m 0 s | 10/16/07        | 0 m 0 s | 14 m 13 s | 10/16/07     | 0 m 0 s | 55 m 45 s |
| 5                 | 10/16/07 | 0 m 0 s | 5 m 0 s | 10/16/07        | 0 m 0 s | 14 m 22 s | 10/17/07     | 0 m 0 s | 55 m 28 s |
| 6a                | 10/22/07 | 0 m 0 s | 5 m 0 s | CHMBR           | START   | STOP      | CHMBR        | START   | STOP      |
| 6b                | 10/22/07 | 0 m 0 s | 5 m 0 s | 1               | 0 m 0 s | 07 m 34 s | 1            | 0 m 0 s | 73 m 32 s |
| 6c                | 10/22/07 | 0 m 0 s | 5 m 0 s | 2               | 0 m 0 s | 08 m 02 s | 2            | 0 m 0 s | 75 m 05 s |
| 6d                | 10/22/07 | 0 m 0 s | 5 m 0 s | 3               | 0 m 0 s | 05 m 38 s | 3            | 0 m 0 s | 34 m 10 s |

|          | FILTE    | ER WT. START | FILTER   | WT. DRIED w/TSS | FILT     | ER WT. STOP |
|----------|----------|--------------|----------|-----------------|----------|-------------|
| TESTS    | DATE     | WEIGHT       | DATE     | WEIGHT          | DATE     | WEIGHT      |
| 1        | 10/15/07 | 18.63 g      | 10/15/07 | 140.58 g        | 10/15/07 | 20.99 g     |
| 2        | 10/16/07 | 13.37 g      | 10/16/07 | 139.09 g        | 10/16/07 | 15.91 g     |
| 3        | 10/16/07 | 14.07 g      | 10/16/07 | 141.30 g        | 10/16/07 | 16.83 g     |
| 4        | 10/16/07 | 13.92 g      | 10/16/07 | 137.66 g        | 10/16/07 | 16.13 g     |
| 5        | 10/16/07 | 14.01 g      | 10/16/07 | 139.10 g        | 10/17/07 | 16.68 g     |
| 6 chmb 1 | 10/22/07 | 14.06 g      | 10/22/07 | 225.29 g        | 10/22/07 | 16.82 g     |
| 6 chmb 2 | 10/22/07 | 14.05 g      | 10/22/07 | 236.79 g        | 10/22/07 | 17.57 g     |
| 6 chmb 3 | 10/22/07 | 14.03 g      | 10/22/07 | 73.94 g         | 10/22/07 | 14.82 g     |

| TESTS | DATE               | FLOW RATE | OK-110 START | OK-110 TRAP. | REM. EFF. |
|-------|--------------------|-----------|--------------|--------------|-----------|
| 1     | 10/15/07           | 68.14 LPM | 153.00       | 121.95       | 79.71%    |
| 2     | 10/16/07           | 67.91 LPM | 153.00       | 125.72       | 82.17%    |
| 3     | 10/16/07           | 69.50 LPM | 153.00       | 127.23       | 83.16%    |
| 4     | 10/16/07           | 69.50 LPM | 153.00       | 123.74       | 80.88%    |
| 5     | 10/16/07           | 69.50 LPM | 153.00       | 125.09       | 81.76%    |
| 6     | 10/22/07           | 69.50 LPM | 612.00       | 493.88       | 80.70%    |
| OV    | OVERALL EFFICIENCY |           | 1377.00      | 1117.61      | 81.16%    |



# UNISTORM TESTS - RAW DATA FLOATABLES CAPTURE TESTS

| TEST FEED TO UNIT |          |         |         |                 | BEAD CARRYOVER |             |                 |              |             |  |  |
|-------------------|----------|---------|---------|-----------------|----------------|-------------|-----------------|--------------|-------------|--|--|
| TES               | ST 1     | TI      | ME      | PASSED          | ) to 2nd C⊦    | AMBER       | PASSE           | O to 3rd CH  | IAMBER      |  |  |
| RUNS              | DATE     | START   | STOP    | BEADS<br>1ST CM | LGE<br>BEADS   | SM<br>BEADS | BEADS<br>2ND CM | MED<br>BEADS | SM<br>BEADS |  |  |
| 1                 | 10/22/07 | 0 m 0 s | 5 m 0 s | 8 L 144 S       | 3              | 34          | 0               | 0            | 0           |  |  |
| 2                 | 10/22/07 | 0 m 0 s | 5 m 0 s | 5 L 110 S       | 0              | 11          | 3 L 34 S        | 0            | 0           |  |  |
| 3                 | 10/22/07 | 0 m 0 s | 5 m 0 s | 5 L 99 S        | 0              | 9           | 3 L 45 S        | 0            | 0           |  |  |
| 4                 | 10/22/07 | 0 m 0 s | 5 m 0 s | 5 L 90 S        | 0              | 3           | 3 L 54 S        | 0            | 0           |  |  |
| 5                 | 10/22/07 | 0 m 0 s | 5 m 0 s | 5 L 87 S        | 0              | 3           | 3 L 57 S        | 0            | 0           |  |  |

| Т    | TEST FEED TO UNIT |         |         |                 | BEAD CARRYOVER |             |                       |              |             |  |  |
|------|-------------------|---------|---------|-----------------|----------------|-------------|-----------------------|--------------|-------------|--|--|
| TES  | ST 2              | TII     | ME      | PASSED          | ) to 2nd C⊦    | AMBER       | PASSED to 3rd CHAMBER |              |             |  |  |
| RUNS | DATE              | START   | STOP    | BEADS<br>1ST CM | LGE<br>BEADS   | SM<br>BEADS | BEADS<br>2ND CM       | MED<br>BEADS | SM<br>BEADS |  |  |
| 1    | 10/22/07          | 0 m 0 s | 5 m 0 s | 8 L 144 S       | 1              | 24          | 0                     | 0            | 0           |  |  |
| 2    | 10/22/07          | 0 m 0 s | 5 m 0 s | 7 L 110 S       | 0              | 15          | 1 L 24 S              | 0            | 0           |  |  |
| 3    | 10/22/07          | 0 m 0 s | 5 m 0 s | 7 L 95 S        | 0              | 12          | 1 L 39 S              | 0            | 0           |  |  |
| 4    | 10/22/07          | 0 m 0 s | 5 m 0 s | 7 L 83 S        | 1              | 2           | 1 L 51 S              | 0            | 0           |  |  |
| 5    | 10/22/07          | 0 m 0 s | 5 m 0 s | 6 L 81 S        | 0              | 3           | 2 L 53 S              | 0            | 0           |  |  |

| TEST 1 |          |           |  |  |  |  |  |  |
|--------|----------|-----------|--|--|--|--|--|--|
| RUNS   | DATE     | FLOW RATE |  |  |  |  |  |  |
| 1      | 10/22/07 | 69.50 LPM |  |  |  |  |  |  |
| 2      | 10/22/07 | 69.50 LPM |  |  |  |  |  |  |
| 3      | 10/22/07 | 69.50 LPM |  |  |  |  |  |  |
| 4      | 10/22/07 | 69.50 LPM |  |  |  |  |  |  |
| 5      | 10/22/07 | 69.50 LPM |  |  |  |  |  |  |

| TEST 2 |          |           |  |  |  |  |
|--------|----------|-----------|--|--|--|--|
| RUNS   | DATE     | FLOW RATE |  |  |  |  |
| 1      | 10/22/07 | 69.50 LPM |  |  |  |  |
| 2      | 10/22/07 | 69.50 LPM |  |  |  |  |
| 3      | 10/22/07 | 69.50 LPM |  |  |  |  |
| 4      | 10/22/07 | 69.50 LPM |  |  |  |  |
| 5      | 10/22/07 | 69.50 LPM |  |  |  |  |



# UNISTORM TESTS - RAW DATA SCOURING TESTS

| TEST FEED TO UNIT |          |         | IT      | SCOURING CARRYOVER |                           |                           |  |
|-------------------|----------|---------|---------|--------------------|---------------------------|---------------------------|--|
|                   |          | TIME    |         | ST/                | ART                       | STOP                      |  |
| TEST              | DATE     | START   | STOP    | FLOW RATE          | WT. OF FILTER IN<br>GRAMS | WT. OF FILTER IN<br>GRAMS |  |
| 1                 | 10/22/07 | 0 m 0 s | 5 m 0 s | 69.50 LPM          | 962.40                    | 962.38                    |  |
|                   |          |         |         |                    | CARRYOVER                 | UNDETECTED                |  |

| TEST FEED TO UNIT |          |         | IT      | SCOURING CARRYOVER |                           |                           |  |
|-------------------|----------|---------|---------|--------------------|---------------------------|---------------------------|--|
|                   |          | TIME    |         | STA                | ART                       | STOP                      |  |
| TEST              | DATE     | START   | STOP    | FLOW RATE          | WT. OF FILTER IN<br>GRAMS | WT. OF FILTER IN<br>GRAMS |  |
| 2                 | 10/22/07 | 0 m 0 s | 5 m 0 s | 69.50 LPM          | 962.38                    | 962.39                    |  |
|                   |          |         |         |                    | CARRYOVER                 | UNDETECTED                |  |

# UNISTORM TESTS - RAW DATA HYDROCARBONS CAPTURE TESTS

| TEST FEED TO UNIT    |          |         | HYDROCARBON CARRYOVER |           |                               |              |              |              |
|----------------------|----------|---------|-----------------------|-----------|-------------------------------|--------------|--------------|--------------|
|                      |          | TIME    |                       | START     |                               | STOP         |              |              |
| TEST                 | DATE     | START   | STOP                  | FLOW RATE | HYDRO-<br>CARBON IN<br>LITERS | 1st<br>CHMBR | 2nd<br>CHMBR | 3rd<br>CHMBR |
| 1                    | 10/22/07 | 0 m 0 s | 5 m 0 s               | 69.50 LPM | 0.50                          | 75%          | 25%          | 0%           |
| 2                    | 10/22/07 | 0 m 0 s | 5 m 0 s               | 69.50 LPM | 0.00                          | 59%          | 41%          | 0%           |
| FINALAMOUNT IN LITER |          | LITERS  | .294 L                | .206 L    | 0 L                           |              |              |              |



# ATTACHMENT C

# UNISTORM INSTALLATION SCHEMATIC



### UNISTORM INSTALLATION SCHEMATIC

### VAULT ONLINE

| MODEL | DIMEN     | SIONS | ENVE   | LOPE  |
|-------|-----------|-------|--------|-------|
| VAULT | INSIDE    | SUMP  | LENGTH | WIDTH |
| 510V  | 5' x 10'  | 4.5'  | 16'    | 16'   |
| 612V  | 6' x 12'  | 4.5'  | 18'    | 18'   |
| 812V  | 8' x 12'  | 4.5'  | 20'    | 18'   |
| 1020V | 10' x 20' | 4.5'  | 22'    | 22'   |

| MODEL | DIMEN     | ISIONS | ENVEL  | .OPE  |
|-------|-----------|--------|--------|-------|
| VAULT | INSIDE    | SUMP   | LENGTH | WIDTH |
| 510V  | 5' x 10'  | 4.5'   | 20'    | 15'   |
| 612V  | 6' x 12'  | 4.5'   | 24'    | 18'   |
| 812V  | 8' x 12'  | 4.5'   | 24"    | 22'   |
| 1020V | 10' x 20' | 4.5'   | 30'    | 22'   |





| MODEL | DIMENSIONS |      | ENVELOPE |       |
|-------|------------|------|----------|-------|
| VAULT | INSIDE     | SUMP | LENGTH   | WIDTH |
| 510V  | 5' x 10'   | 4.5' | 16'      | 30'   |
| 612V  | 6' x 12'   | 4.5' | 18'      | 32'   |
| 812V  | 8' x 12'   | 4.5' | 20'      | 34'   |
| 1020V | 10' x 20'  | 4.5' | 22'      | 44'   |

Envelope Length





## UNISTORM INSTALLATION SCHEMATIC

| MODEL   | DIMEN   | SIONS | ENVELOPE |       |  |
|---------|---------|-------|----------|-------|--|
| MANHOLE | INSIDE  | SUMP  | LENGTH   | WIDTH |  |
| 5R      | 5' dia  | 4.5'  | 16'      | 20'   |  |
| 6R      | 6' dia  | 4.5'  | 18'      | 22'   |  |
| 8R      | 8' dia  | 4.5'  | 20'      | 24'   |  |
| 10R     | 10' dia | 4.5'  | 22'      | 28'   |  |



| MODEL   | DIMENSIONS<br>INSIDE SUMP |      | ENVEL  | .OPE  |
|---------|---------------------------|------|--------|-------|
| MANHOLE |                           |      | LENGTH | WIDTH |
| 5R      | 5' dia                    | 4.5' | 16'    | 16'   |
| 6R      | 6' dia                    | 4.5' | 16'    | 16'   |
| 8R      | 8' dia                    | 4.5' | 18'    | 18'   |
| 10R     | 10' dia                   | 4.5' | 20'    | 20'   |

Envelope Width



#### MANHOLE ONLINE



Technology That Separates

## UNISTORM INSTALLATION SCHEMATIC

OFFLINE

| MODEL | DIMEN     | SIONS | ENVEL  | .OPE  |
|-------|-----------|-------|--------|-------|
| VAULT | INSIDE    | SUMP  | LENGTH | WIDTH |
| 510V  | 5' x 10'  | 4.5'  | 16'    | 16'   |
| 612V  | 6' x 12'  | 4.5'  | 18'    | 18'   |
| 812V  | 8' x 12'  | 4.5'  | 20'    | 18'   |
| 1020V | 10' x 20' | 4.5'  | 22'    | 22'   |

| MODEL   | DIMEN   | ISIONS | ENVEL  | .OPE  |
|---------|---------|--------|--------|-------|
| MANHOLE | INSIDE  | SUMP   | LENGTH | WIDTH |
| 5R      | 5' dia  | 4.5'   | 16'    | 16'   |
| 6R      | 6' dia  | 4.5'   | 16'    | 16'   |
| 8R      | 8' dia  | 4.5'   | 18'    | 18'   |
| 10R     | 10' dia | 4.5'   | 20'    | 20'   |







| MODEL | DIMENSIONS |      | ENVELOPE |       |
|-------|------------|------|----------|-------|
| VAULT | INSIDE     | SUMP | LENGTH   | WIDTH |
| 510V  | 5' x 10'   | 4.5' | 22'      | 16'   |
| 612V  | 6' x 12'   | 4.5' | 24'      | 18'   |
| 812V  | 8' x 12'   | 4.5' | 24'      | 20'   |
| 1020V | 10' x 20'  | 4.5' | 40'      | 22'   |





# ATTACHMENT D

# UNISTORM INFORMATION SHEETS



## UNISTORM ONLINE SYSTEM / ADAPT TO SITE LAYOUT

UNISTORM SIZING TABLE UNISTORM D MAX.IMPERVIOUS INLET TREATMENT PEAK (ft.) MODEL S AREA PIPE FLOW FLOW (ft.) (acres) # (in.) (cfs) (cfs) 5R 5 5.0± 0 - 3 12-15 0 - 2 6 2 - 3 6R 6 5.3± 3 - 4 18 7 3 - 5 7R 5.6± 4 - 6 21 9 7 6 - 10 24 8R 8 6.0± 5 - 7 16 10R 10 6.6± 10 - 12 30 7 - 10 25 12R 7.3± 12 - 15 36 10 - 13 35 12

# CALL: 1-800-809-2801



DESIGN LOADING: AASHTO HS20-44

DATE: 1-25-08 DWG. NO.: Detail - Unistorm-R

**Global Stormwater Solutions** 

P.O. Box 55 | East Pembroke | NY 14056

www.env21.com | enveng@env21.com

NOTES:

1) RAINFALL INTENSITY USED FOR

BY ENVIRONMENT 21, LLC.

MANUFACTURING NOTES:

TREATMENT FLOW = 0.80-1.0 IN/HR

1) DESIGN OF INTERNAL BAFFLE WALL PROVIDED TO LICENSED MANUFACTURER

Phone: 1-800-809-2801 | Fax: 1-800-809-2801



× --

Contract Drilling and Testing

**BUFFALO OFFICE** 

5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

## Particle Size Distribution Report

### Project: STORM WATER TREATMENT CHAMBER

#### Project No.: BEV-04-025

#### Client: ENVIROMENTAL 21



| SIEVE                                             | PERCENT                                                | SPEC.*  | PASS?  |                                                                          | Soil Description                                                                                                      | on                            |
|---------------------------------------------------|--------------------------------------------------------|---------|--------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------|
| SIZE                                              | FINER                                                  | PERCENT | (X=NO) | GREY CLAY, L                                                             | ITTLE SILT, TR.                                                                                                       | ACE SAND                      |
| 25 in.<br>#4<br>#10<br>#20<br>#40<br>#100<br>#200 | 100.0<br>100.0<br>99.7<br>98.5<br>98.1<br>97.1<br>95.3 |         |        | PL=<br>D <sub>85</sub> = 0.0075<br>D <sub>30</sub> =<br>C <sub>u</sub> = | Atterberg Limi<br>LL=<br>Coefficients<br>D <sub>60</sub> =<br>D <sub>15</sub> =<br>C <sub>c</sub> =<br>Classification | PI=<br>$D_{50}=$<br>$D_{10}=$ |
|                                                   |                                                        |         |        | 0505-                                                                    | AASI                                                                                                                  | -10-                          |
|                                                   |                                                        |         |        |                                                                          |                                                                                                                       |                               |
|                                                   |                                                        |         |        | LTR-3                                                                    |                                                                                                                       |                               |
|                                                   |                                                        |         |        | SAMPLED BY:                                                              | SJB                                                                                                                   |                               |
|                                                   |                                                        |         |        | DATE RECEIVE                                                             | ED: 3/4/05                                                                                                            |                               |
| (                                                 | (hebiter mailed)                                       |         |        |                                                                          |                                                                                                                       | Plate                         |

 Albany, NY
 Cortland, NY
 Rochester, NY
 Syracuse, NY

 (518) 899-7491
 (607) 758-7182
 (585) 359-2730
 (315) 437-3890



Contract Drilling and Testing

BUFFALO OFFICE

5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

# Laboratory Test Report

| PROJECT: | Storm Water Treatment C | hamber                                       |
|----------|-------------------------|----------------------------------------------|
| CLIENT:  | Environmental 21        |                                              |
| DATE:    | March 18, 2005          | PROJECT NO.: BEV-04-025<br>REPORT NO.: LTR-3 |

#### SAMPLE INFORMATION:

Sample No. 05-201 was received at the SJB Services, Inc. laboratory on March 4, 2005. Sample is described as the second stage material from the Amherst Unistorm.

#### ASTM D-422: Particle Size Analysis of Soils

| Sieve | Percent |                    |       |        |        |
|-------|---------|--------------------|-------|--------|--------|
| Size  | Passing |                    |       |        |        |
| 1/4"  | 100.0   |                    |       |        |        |
| #4    | 100.0   |                    |       |        |        |
| #10   | 99.7    | PERCENT COMPONENTS |       |        |        |
| #20   | 98.5    | GRAVEL             | SAND  | SILT   | CLAY   |
| #40   | 98.1    | 0.0 %              | 4.7 % | 17.0 % | 78.3 % |
| #100  | 97.1    |                    |       |        |        |
| #200  | 95.3    |                    |       |        |        |
|       |         |                    |       |        |        |

ASTM D-2974: Moisture, Ash, and Organic Matter of Peat and Other Organic Soils

Organic Content : 5.2 % Mineral Residue Content : 94.8 %

#### **Bulk Density Results**

Wet Bulk Density =  $83.64 \text{ lbs./ft}^3$  at 138.25 % received moisture content Dry Bulk Density =  $35.11 \text{ lbs./ft}^3$ 

SJB Services, Inc.

Paul Gregorczyk

Laboratory Manager

Albany, NY (518) 899-7491 Cortland, NY (607) 758-7182 Rochester, NY (585) 359-2730 Syracuse, NY (315) 437-3890



Sec.

Contract Drilling and Testing

#### **BUFFALO OFFICE**

5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

## Particle Size Distribution Report

### Project: STORM WATER TREATMENT CHAMBER

#### Project No.: BEV-04-025

Client: ENVIROMENTAL 21



| SIEVE                                               | PERCENT                                                         | SPEC.*  | PASS?  | CDEVCLAV                                   | Soil Descripti                                              | ion                                                                    |
|-----------------------------------------------------|-----------------------------------------------------------------|---------|--------|--------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------|
| SIZE<br>.25 in.<br>#4<br>#10<br>#20<br>#100<br>#200 | FINER<br>100.0<br>100.0<br>99.7<br>98.4<br>97.7<br>94.9<br>91.8 | PERCENT | (X=NO) | GREY CLAY, I<br>PL=<br>D85= 0.0076<br>D30= | Atterberg Lim<br>LL=<br><u>Coefficients</u><br>D60=<br>D15= | $\frac{\text{nits}}{\text{PI=}}$ $\frac{\text{D}_{50}}{\text{D}_{10}}$ |
|                                                     |                                                                 |         |        | USCS=                                      | Classificatio<br>AAS                                        | n<br>HTO=                                                              |
|                                                     |                                                                 |         |        | LTR-2<br>SAMPLED BY:<br>DATE RECEIV        | SJB<br>ED: 3/4/05                                           |                                                                        |
| (no specif                                          | ication provided)                                               |         |        |                                            |                                                             | Plate                                                                  |

 Albany, NY
 Cortland, NY
 Rochester, NY
 Syracuse, NY

 (518) 899-7491
 (607) 758-7182
 (585) 359-2730
 (315) 437-3890


Contract Drilling and Testing

**BUFFALO OF** 

5167 South Park / Hamburg, NY 1 Phone: (716) 649 Fax: (716) 649-4

Laboratory Test Report

| PROJECT: | Storm Water Treatment Chamber | r                                            |
|----------|-------------------------------|----------------------------------------------|
| CLIENT:  | Environmental 21              |                                              |
| DATE:    | March 18, 2005                | PROJECT NO.: BEV-04-025<br>REPORT NO.: LTR-2 |

### SAMPLE INFORMATION:

Sample No. 05-200 was received at the SJB Services, Inc. laboratory on March 4, 2005. Sample is described as the first stage material from the Amherst Unistorm.

### ASTM D-422: Particle Size Analysis of Soils

| Sieve | Percent |        |        |        |        |
|-------|---------|--------|--------|--------|--------|
| Size  | Passing |        |        |        |        |
| 1/4"  | 100.0   |        |        |        |        |
| #4    | 100.0   |        |        |        |        |
| #10   | 99.7    | PERC   | ENT CO | MPONEN | NTS    |
| #20   | 98.4    | GRAVEL | SAND   | SILT   | CLAY   |
| #40   | 97.7    | 0.0 %  | 8.2 %  | 14.1 % | 77.7 % |
| #100  | 94.9    |        |        |        |        |
| #200  | 91.8    |        |        |        |        |

ASTM D-2974: Moisture, Ash, and Organic Matter of Peat and Other Organic Soils

Organic Content : 6.1 % Mineral Residue Content : 93.9 %

### **Bulk Density Results**

Wet Bulk Density =  $83.51 \text{ lbs./ft}^3$  at 141.89 % received moisture content Dry Bulk Density =  $34.52 \text{ lbs./ft}^3$ 

SJB Services, Inc.

Paul Gregorczyk

Laboratory Manager

Albany, NY (518) 899-7491 Cortland, NY (607) 758-7182 Rochester, NY (585) 359-2730 <u>Syracuse, NY</u> (315) 437-3890



1

Contract Drilling and Testing

#### **BUFFALO OFFICE**

5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

# Particle Size Distribution Report

### Project: STORM WATER TREATMENT CHAMBER

Project No.: BEV-04-025

### Client: ENVIROMENTAL 21



| SIEVE                                                         | PERCENT                                                                       | SPEC.*  | PASS?  |                                                           | Soil Description                                                                               |                                                            |
|---------------------------------------------------------------|-------------------------------------------------------------------------------|---------|--------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| SIZE                                                          | FINER                                                                         | PERCENT | (X=NO) | BROWN SAND                                                | , LITTLE SILT, CLA                                                                             | Y & GRAVEL                                                 |
| 1 in.<br>.75 in.<br>.5 in.<br>#4<br>#10<br>#16<br>#50<br>#100 | 100.0<br>97.5<br>94.0<br>89.8<br>88.8<br>85.5<br>82.0<br>76.8<br>70.7<br>54.9 |         |        | PL=<br>D <sub>85</sub> = 1.83<br>D <sub>30</sub> = 0.0738 | Atterberg Limits<br>LL=<br>Coefficients<br>D <sub>60</sub> = 0.177<br>D <sub>15</sub> = 0.0118 | PI=<br>D <sub>50</sub> = 0.131<br>D <sub>10</sub> = 0.0041 |
| #200                                                          | 30.4                                                                          |         |        | $C_{u} = 43.43$                                           | C <sub>C</sub> = 7.56                                                                          |                                                            |
|                                                               |                                                                               |         |        | USCS=                                                     | AASHTC                                                                                         | )=                                                         |
|                                                               |                                                                               |         |        | 10000000                                                  | Remarks                                                                                        |                                                            |
|                                                               |                                                                               |         |        | LTR-1                                                     |                                                                                                |                                                            |
|                                                               |                                                                               |         |        | SAMPLED BY:<br>DATE RECEIV                                | SJB<br>ED: 3/4/05                                                                              |                                                            |
| (no specif                                                    | fication provided)                                                            |         |        |                                                           | F                                                                                              | Plate                                                      |

Albany, NY (518) 899-7491 Cortland, NY (607) 758-7182 Rochester, NY (585) 359-2730 Syracuse, NY (315) 437-3890



Contract Drilling and Testing

BUFFALO OFFICE 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

# Laboratory Test Report

| PROJECT: | Storm Water Treatment Chambo | er                                           |
|----------|------------------------------|----------------------------------------------|
| CLIENT:  | Environmental 21             |                                              |
| DATE:    | March 18, 2005               | PROJECT NO.: BEV-04-025<br>REPORT NO.: LTR-1 |

### SAMPLE INFORMATION:

Sample No. 05-199 was received at the SJB Services, Inc. laboratory on March 4, 2005. Sample is described as the site material from the Amherst Unistorm.

### ASTM D-422: Particle Size Analysis of Soils

| Sieve | Percent |  |  |  |
|-------|---------|--|--|--|
| Size  | Passing |  |  |  |
| 1"    | 100.0   |  |  |  |
| 3/4"  | 97.5    |  |  |  |
| 1/2"  | 94.0    |  |  |  |
| 1/4"  | 89.8    |  |  |  |
| #4    | 88.8    |  |  |  |
| #10   | 85.5    |  |  |  |
| #16   | 82.0    |  |  |  |
| #30   | 76.8    |  |  |  |
| #50   | 70.7    |  |  |  |
| #100  | 54.9    |  |  |  |
| #200  | 30.4    |  |  |  |

PERCENT COMPONENTS GRAVEL SAND SILT CLAY 11.2 % 58.4 % 19.8 % 10.6 %

ASTM D-2974: Moisture, Ash, and Organic Matter of Peat and Other Organic Soils Organic Content: 1.7 %

Mineral Residue Content : 98.3 %

### **Bulk Density Results**

Wet Bulk Density =  $81.19 \text{ lbs./ft}^3$  at 7.5 % received moisture content Dry Bulk Density =  $75.35 \text{ lbs./ft}^3$ 

SJB Services, Inc.

Paul Gregorczyk Laboratory Manager

> Albany, NY (518) 899-7491

Cortland, NY (607) 758-7182 Rochester, NY (585) 359-2730 <u>Syracuse, NY</u> (315) 437-3890

| PI<br>SITE: LAKE FOREST SU<br>MUNICIPALITY: TOWN OF AMHER<br>PROJECT TYPE: SEDIMENT SAMPL<br>NATIVE SOILS: SANDS, SILTS, AN | INS<br>LAST         | DATES<br>STALLATION:<br>CLEANOUT:<br>SAMPLING: |                   |                    |         |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------|-------------------|--------------------|---------|
|                                                                                                                             | LABORATORY DATA SUM | MARY                                           |                   |                    |         |
|                                                                                                                             |                     |                                                | UNISTORM<br>FIRST | UNISTORM<br>SECOND |         |
| ITEM                                                                                                                        | ANALYTICAL METHOD   | SITE                                           | STAGE             | STAGE              | OUTFALL |
| WET SEDIMENT ANALYSIS                                                                                                       |                     |                                                | and a little      |                    |         |
| Bulk Density, lbs/ft^3                                                                                                      | In-House Method     | 81.19                                          | 83.51             | 83.64              | NS      |
| DRY SEDIMENT ANALYSIS                                                                                                       |                     |                                                |                   |                    |         |
| Bulk Density, lbs/ft^3                                                                                                      | In-House Method     | 75.35                                          | 34.52             | 35.11              | NS      |
| Phosphorus Content wt%                                                                                                      | EPA 365.2           | 0.0275                                         | 0.0305            | 0.0398             | NS      |
| Organic Content, wt%                                                                                                        | ASTM D-2974         | 1.7                                            | 6.1               | 5.2                | NS      |
| Mineral Residue, wt%                                                                                                        | 93.9                | 94.8                                           | NS                |                    |         |
| DRY MINERAL SEDIMENT ANALYSIS                                                                                               |                     |                                                |                   |                    |         |
| Phosphorus Content wt%                                                                                                      | EPA 365.2           | 0.0295                                         | 0.0413            | 0.0383             | NS      |
| Particle Size Distribution (Unified Class)                                                                                  | ASTM C566/D421/D422 | SM                                             | CL                | CL                 | NS      |

NS="Not Sampled"



# Contract Drilling and Testing

SUFFALO OFFICE 5167 South Park Avenue Hamburg, NY 14075 Phone: (716) 649-8110

Fax: (716) 649-8051

ALBANY OFFICE
 PO Box 2199
 Ballston Spa, NY 12020

5 Knabner Road Mechanicville, NY 12118 Phone: (518) 899-7491 Fax: (518) 899-7496

CORTLAND OFFICE 60 Miller Street Cortland NY 13045 Phone: (607) 758-7182 Fax: (607) 758-7188

ROCHESTER OFFICE
 535 Summit Point Drive
 Henrietta, NY 14467
 Phone: (585) 359-2730
 Fax: (585) 359-9668

SYRACUSE OFFICE 6730 Myers Road East Syracuse, NY 13057 Phone: (315) 437-3890 Fax: (315) 437-3582 April 15, 2005

Environmental 21, LLC 8713 Read Road East Pembroke, New York 14056 Phone: (585) 762-8314 Fax: (585) 762-8315

Attention: Michael F. Patterson, P.E.-Director of Engineering

Reference: Sediment Sampling and Analysis Stormwater Treatment Chambers Town of Amherst, New York

Dear Mr. Patterson,

SJB Services, Inc. (SJB) is pleased to submit this report summarizing the completion of sediment sampling and analysis for the Lake Forest North stormwater treatment chambers. Following Environment 21's requested scope of work, SJB obtained samples from the first stage and second stage treatment chambers along with a sample collected from the site. The samples were transported to SJB's geotechnical laboratory in Hamburg, New York laboratory analysis of selected physical properties of the sediment. Portions of the sediment samples were transported Paradigm Environmental Services, inc. located in Rochester, New York for additional laboratory analysis of phosphorus content in the sediment.

Presented in Attachment 1 is a table summarizing the laboratory analyses conducted on the sediment samples. SJB's and Paradigm's complete laboratory analytical reports have been included in Attachment 2.

If you should have any questions regarding this report, please do not hesitate to call our office at anytime.

Sincerely,

Charles B. Guzzetta Project Manager Geotechnical/Environmental Specialist



East Pembroke, NY 14056 P: 585-762-8314 F: 575-762-8315 E-mail: envengr@env21.com web site www.env21.com

STORMWATER TREATMENT SOLUTIONS

# 2004 PRECIPITATION DATA FOR BUFFALO, NY WEATHER STATION AT BUFFALO AIRPORT

| FREQUENCY AND DEPTH OF DAILY PRECIPITATION |           |           |              |            |           |          |          |          |          |
|--------------------------------------------|-----------|-----------|--------------|------------|-----------|----------|----------|----------|----------|
| Depth range, in.                           | 0.01-0.09 | 0.10-0.29 | 0.30-0.59    | 0.60-0.99  | 1.0-1.49  | 1.5-1.99 | 2.0-2.49 | 2.5-2.99 | 3.0-3.49 |
|                                            |           | _         | _            | _          | _         | _        | _        | _        |          |
| January                                    | 13        | 7         | 4            | 0          | 0         | 0        | 0        | 0        | 0        |
| February                                   | 6         | 1         | 2            | 0          | 0         | 0        | 0        | 0        | 0        |
| March                                      | 8         | 8         | 2            | 1          | 0         | 0        | 0        | 0        | 0        |
| March                                      | 0         | 0         | 2            | I          | U         | U        | 0        | U        | U        |
| April                                      | 5         | 5         | 5            | 1          | 0         | 0        | 0        | 0        | 0        |
| Мау                                        | 8         | 7         | 1            | 3          | 1         | 0        | 0        | 0        | 0        |
| _                                          |           |           |              |            |           |          |          |          |          |
| June                                       | 7         | 3         | 2            | 1          | 0         | 0        | 0        | 0        | 0        |
| July                                       | 3         | 5         | 2            | 1          | 1         | 0        | 1        | 0        | 0        |
| August                                     | 7         | 3         | 1            | 1          | 0         | 0        | 0        | 0        | 0        |
| September                                  | 2         | 0         | 0            | 1          | 0         | 0        | 0        | 0        | 1        |
|                                            |           |           |              |            |           |          |          |          |          |
| October                                    | 7         | 2         | 3            | 0          | 1         | 0        | 0        | 0        | 0        |
| November                                   | 5         | 2         | 2            | 2          | 0         | 0        | 0        | 0        | 0        |
| December                                   | 10        | 4         | 5            | 1          | 1         | 0        | 0        | 0        | 0        |
|                                            |           |           |              |            |           |          |          |          |          |
|                                            |           | · · - ·   | PRECIPI      | TATION SU  | JMMARY    | •        |          |          | ,        |
| Frequency, days/yr                         | 81        | 4/        | 29           | 12         | 4         | 0        | 1        | 0        | 1        |
| Avg. deptn, in/day                         | 0.05      | 0.2       | 0.45<br>13 1 | 0.8<br>0.6 | 1.25<br>5 | 1.75     | 2.25     | 2.75     | 3.25     |
| Annual depth, Ih/yr                        | 4.1       | 9.4       | 13.1         | 9.6        | 5         | U        | 2.3      | U        | 3.3      |

# environment

STORMWATER TREATMENT SOLUTIONS

East Pembroke, NY 14056 P: 585-762-8314 F: 575-762-8315 E-mail: envengr@env21.com web site www.env21.com

### UNISTORM THIRD PARTY SEDIMENT MONITORING TEST RESULTS TRIBUTARY AREA: LAKE FOREST NORTH SUBDIVISION, AMHERST, NY

|                                       | SAM      | PLE SOU | RCE     |             |
|---------------------------------------|----------|---------|---------|-------------|
|                                       | UNISTORM |         |         | 1           |
|                                       | SITE     | FIRST   | SECOND  | ANALYTICAL  |
| ITEM                                  | SOILS    | STAGE   | STAGE   | STANDARD    |
|                                       |          |         |         |             |
| BULK DENSITY WET, #/CF                | 81.2     | 83.5    | 83.6    |             |
| BULK DENSITY DRY, #/CF                | 75.4     | 34.5    | 35.1    |             |
|                                       |          |         |         |             |
| ORGANIC CONTENT, WT%                  | 1.7      | 6.1     | 5.2     | ASTM D-2974 |
|                                       |          |         |         |             |
| PHOSPHORUS IN TOTAL SEDIMENT, ppm     | 275      | 305     | 398     | EPA 365.2   |
| PHOSPHORUS IN MINERAL SEDIMENT, ppm   | 295      | 413     | 383     | EPA 365.2   |
|                                       |          |         |         |             |
| GRADATION OF TOTAL SEDIMENT, WT%      |          |         |         | ASTM D-422  |
| GRAVEL                                | 11.2     | 0.0     | 0.0     |             |
| SAND                                  | 58.4     | 8.2     | 4.7     |             |
| SILT                                  | 19.8     | 14.1    | 17      |             |
| CLAY                                  | 10.6     | 77.7    | 78.3    |             |
|                                       |          |         |         |             |
| SEDIMENT DEPTH ( BELOW CENTRALLY      | NA       | 11"-12" | 11"-12" |             |
| LOCATED 24" DIAMETER ACCESS OPENINGS) |          |         |         |             |

SEDIMENT (1) SEDIMENT SAMPLING AND DEPTH MEASUREMENT BY SJB SERVICES, HAMBURG, NY
 SAMPLING (2) DENSITY, ORGANICS, AND GRADATION ANALYSIS BY SJB SERVICES
 AND ANALYSIS (3) PHOSPHORUS ANALYSIS BY PARADIGM ENVIRONMENTAL SERVICES, ROCHESTER, NY

#### **ENVIRONMENT 21 COMMENTS ON TEST RESULTS**

SITE SOILS AREA ADJACENT TO THE PAVEMENT AREA WAS STRIPPED OF TOPSOIL. GRADATION ANALYSIS INDICATES UNDERLYING SOILS SIMILAR TO LAMSON VERY FINE SANDY LOAM.

**BULK DENSITY** SEDIMENT DRY DENSITY IN THE CHAMBERS IS APPROXIMATELY 40% OF THAT FOR THE NATIVE SOILS. THIS IS INDICATIVE OF EXTREMELY SLOW SETTLING OF FINELY DIVIDED SUBMERGED CLAY SOLIDS.

ORGANICS LOW ORGANIC CONTECT IS CONSISTENT WITH UNVEGETATED AREAS ADJACENT TO PAVEMENT

 PHOSPHORUS (1) HIGHER PPM IN UNISTORM SEDIMENT SUGGESTS INFLUENT PHOSPHORUS IS NOT SOLUBLE
 CONTENT (2) PHOSPHORUS SOURCE IS EXPECTED TO BE FROM PREVIOUS FARMING ACTIVITIES AND/OR ATMOSPHERIC DEPOSITION

**GRADATION** CLAY FRACTION IN THE UNISTORM IS SEVEN TIMES HIGHER THAT THAT IN THE SITE SOILS. THIS INDICATES THAT RAINFALL EVENTS WERE NOT ADEQUATE TO TRANSPORT COARSER SEDIMENT TO THE STORM SEWER SYSTEM. THIS ALSO SUGGESTS THAT THE TOP LAYERS OF UNVEGETATED SOIL MAY HAVE BEEN REDUCED IN CLAY CONTENT AND WILL BE LESS SUBJECT TO FURTHER EROSION.

UNISTORM NOVEMBER 2003-- SYSTEM INSTALLED OPERATING NOVEMBER 2004 -- FIRST INSPECTION BY TOWN OF AMHERST HIGHWAY DEPARTMENT HISTORY MARCH 2005 -- SEDIMENT SAMPLES REMOVED FOR ANALYSIS JULY 2005 -- EXPECTED FIRST PUMPOUT BY TOWN OF AMHERST HIGHWAY DEPARTMENT

UNISTORM (1) FIRST AND SECOND STAGES EACH 2.5' W X 10'L ( 5'X10' PRECAST CONCRETE VAULT) DIMENSIONS (2) RIM MINUS FLOOR = 9.6', SUMP DEPTH = 5', 24" OUTLET PIPE (3) TOTAL SUMP VOLUME = 240 CF+/- = 1800 GAL+/-



179 Lake Avenue Rochester, New York 14608 (585) 647-2530 FAX (585) 647-3311

### LABORATORY REPORT OF ANALYSIS

| Client:          | Empire Geo Services, Inc.      | Lab Project No.:   | 05-1140   |
|------------------|--------------------------------|--------------------|-----------|
| Client Job Site: | Lake Forest North, Amherst, NY |                    |           |
|                  |                                | Sample Type:       | Soil      |
| Client Job No.:  | N/A                            | Analytical Method: | EPA 365.2 |
|                  |                                | Date Sampled:      | 4/4/2005  |
|                  |                                | Date Received:     | 4/6/2005  |
|                  |                                | Date Analyzed:     | 4/14/2005 |

| Lab Sample<br>ID. | Sample Location/Field ID                | Total Phosphorus<br>(mg/kg) |
|-------------------|-----------------------------------------|-----------------------------|
| 4832              | Uni-Storm 1st Stage/Dry Sed.            | 305                         |
| 4833              | Uni -Storm 2nd Stage/Dry Sed.           | 398                         |
| 4834              | Site Sample/Dry Sed.                    | 275                         |
| 4835              | Uni-Storm 1st Stage/Dry Mineral<br>Sed. | 413                         |
| 4836              | Uni-Storm 2nd Stage/Dry Mineral<br>Sed. | 383                         |
| 4837              | Site Sample/Dry Mineral Sed.            | 295                         |

ELAP ID No. 10709

Comments:

ND denotes non-detected.

Approved By Technical Director:

Harta

Bruce Hoogesteger



# ATTACHMENT E

# **UNISTORM MAINTENANCE**



# UNISTORM SYSTEM MAINTENANCE

# 1.0 UNISTORM DESCRIPTION

- 1.1 The Unistorm is a precast concrete structure. It is available in different configurations (e.g., with an at grade inlet grate, flow control, etc.) and with different attachments (e.g., flow control vanes, flow diffusers, etc.).
- 1.2 The Unistorm System consists of stages of treatment separated by a precast concrete baffle walls. The baffle walls are designed to meet site-specific flow requirements and provide four functions:
  - (a) Removes floatables and sediment in the inlet stage
  - (b) Provides a low head loss flow path between the first and second stages
  - (c) Provides for additional sediment removal in the second stage.
  - (d) Provides flow control either with vanes mounted on the upstream side of the baffle wall or through diversion baffles.
- 1.3 The Unistorm Systems are manufactured from standard precast concrete components. These components are designed to reduce the weight that needs to be handled during shipment and installation.
- 1.4 Normal water depth in the Unistorm System structure sump will be 3-6 ft dependent on the project requirements. This shallow sump reduces excavation costs and the depth to be accessed from a standard vacuum truck (13' lift).
- 1.5 Cast iron access frames with vented covers are provided in the Unistorm System roof to make the sediment pile readily accessible for measurement and cleaning in each stage of the structure.

# 2.0 POLLUTANT STORAGE CAPACITY AND CLEANOUT FREQUENCY

2.1 The recommended maintenance practice for the Unistorm System is to plan on quarterly inspections and an annual pump-out based on the following general design guidelines:



- 2.1.1 Sediment Sump -- the rate at which sediment is accumulated will depend on land use and other pavement activities (e.g., heavy winter sanding will create extra sediment, while regular sweeping will reduce accumulation). The Unistorm System structure sump is designed to store an average sediment pile depth of up to 1.0 ft. Environment 21 recommends that the sediment should be removed when the first-stage sediment pile depth is 6"-12"
- 2.1.2 Floatables Chambers -- oil sheen and floating debris will be retained in the inlet stage of the Unistorm System. Annual accumulation of floatables is estimated at less than 0.50 feet but can vary depending on land use.
  - 2.1.3 During the first year of operation, Environment 21 recommends visual inspections in January, April, July, and October. This inspection schedule may be modified in subsequent years according to experience or to meet specific stormwater permit requirements.
  - 2.1.4 Refer to the Environment 21 system specific design package for the estimated maintenance interval or call 1-800-809-2801.

# 3.0 SAFETY

- 3.1 Safety is a priority and the following are recommended guidelines while performing maintenance on Unistorm Systems. These guidelines are not all-inclusive and by no means are they meant to usurp any safety program already in place for the individuals performing the maintenance on the Unistorm System.
  - 3.1.1 The Unistorm System is a confined space structure but entry into it is not required and is not recommended by Environment 21. The design of the Unistorm System is

such that all of the maintenance may be completed without entry. In the remote chance that entry into the Unistorm System structure is required only trained, qualified workers with the proper Personal Protective Equipment (PPE) should perform the entry.



- 3.1.1.1 If a personnel entry is required it should be made per OSHA guidelines and any regulations concerning confined space entry, ladder safety, electrical safety (especially around water), environment safety (hazardous atmosphere, weather, etc.), and any other regulations deemed appropriate by local authorities. These regulations are generally minimum requirements so the most stringent of these should be followed. Physical access equipment should be determined by the prevalent conditions. An example would be to use a properly secured approved ladder (e.g., extension ladder) that is in a low traffic volume (both pedestrian and vehicle) area with an obliging terrain (e.g., flat).
- 3.1.2 The Unistorm System has cast iron access frames with vented covers which provide access to all stages of the Unistorm system. The openings are normally at ground level so the work area should be staged properly with safeguards to prevent anyone or anything from inadvertently falling through an opening in the Unistorm System structure. The access openings provided are usually sized at 24" or 30", dependent on the diameter of the structure, and conform to ASTM C478 specifications.
- 3.1.3 After maintenance has been completed on the Unistorm System, the area should be cleared of slip and trip hazards and the cast iron vented covers set securely in place.

# 4.0 FLOATABLES OBSERVATION AND MEASUREMENT

- 4.1 Maintain an inventory all tools and equipment used for completion of this procedure.
- 4.2 Obtain a flood light and a rod (measuring rod from step 5.2)
- 4.3 Set up the work area using proper safety procedures, equipment (e.g., barricades) and PPE as required.



- 4.4 Carefully remove the cast iron vented covers using proper lifting and rigging equipment; set the covers off to the side in a safe area and safe configuration (e.g., not suspended).
- 4.5 Illuminate the water surface in the inlet stage of the Unistorm System with the flood light.
- 4.6 Gently stir the floatables to estimate the depth. Obtain a sample of the floatables, water, or sediment, if required, for waste disposal. The depth of the oil sheen and floating debris will typically be less than one inch and can be skimmed from the surface prior to the pump-out of the sediment. Organic debris that has become waterlogged and settled to the floor is expected to be present in relatively small quantities that will be removed during the pump out of the mineral sediment.
- 4.7 Inspect all surfaces, which can be seen, of the Unistorm System structure for wear (e.g., cracking, spalling, etc.). Report signs of degradation to the proper authorities (i.e., owner, municipality, etc.).
- 4.8 Repeat steps 4.6 and 4.7 for other stages of the Unistorm System.

# 5.0 SEDIMENT PILE DEPTH MEASUREMENT

- 5.1 Complete section 4.0 of this procedure prior this section.
- 5.2 Obtain a measuring rod (increments in inches marked on the rod) that will reach the floor of the Unistorm System structure and still extend a minimum of 2' above the cast iron access frame. The rod should not bend.
- 5.3 Lower the measuring rod into the inlet stage of the Unistorm System structure until a slight resistance to movement occurs; the rod is now at the top of the sediment pile. Obtain a sight measurement by sighting the rod measuring increments to a point on the cover frame.
- 5.4 Twist the measuring rod into the sediment pile until the measuring rod is on the floor (verify the expected level using project submittal drawings). Obtain a sight measurement by sighting the rod increments to the same point on the access frame as was used in step 5.3. Subtract the smaller number from the larger number as obtained in this step and step 5.3. For example, if the measurement in step 5.3 is 8' 0" and the measurement in



step 5.4 is 8' 3" subtract the 8' 0" from the 8' 3". This is the sediment depth of the Unistorm System.

- 5.5 Repeat steps 5.3 and 5.4 for all other stages of the Unistorm System.
- 5.5 If pump-out of the Unistorm System is required and will occur immediately go to Section 6.0 of this procedure; if not go to Section 7.0 of this procedure.

# 6.0 PUMP-OUT OF THE UNISTORM SYSTEM

- 6.1 Contact the following for approval and notification of the intent to pump out the Unistorm System:
  - 6.1.1 Owner
    - 6.1.1.1 Obtain permission from the Owner to pump out the contents of the Unistorm System.
  - 6.1.2 Waste Disposal Facility
    - 6.1.2.1 Facilities used by the local Highway Department may be acceptable, while, for industrial sites, the pumper truck contents should be delivered to a disposal site approved by the owner of the industrial site and disposed of in accordance with local requirements for disposal of pollutants.
    - 6.1.2.2 Obtain permission to deliver the waste to the facility.
  - 6.1.3 Government Agencies
    - 6.1.3.1 Obtain permission, as required, from local, State and Federal Agencies.
- 6.2 Obtain a standard truck-mounted sewer and catch basin cleaner with positive displacement rotary lobe vacuum pumps or other acceptable pump-out equipment.
- 6.3 If the area was secured after the inspection and Section 7.0 was performed complete steps 4.2 and 4.3 of this procedure.



- 6.4 Using the truck-mounted sewer and catch basin cleaner, suction the floatables and hydrocarbons from the inlet stage. Segregate this waste from the sediment and water as required by the local regulations and the waste facility.
- 6.5 Using the truck-mounted sewer and catch basin cleaner, suction the standing water and sediment from the inlet stage. Segregate this waste from the hydrocarbons and floatables as required by the local regulations and the waste facility.
- 6.6 Using the water supply from the vacuum truck wash down the interior surface of the Unistorm system and suction the waste from the bottom of the structure.
- 6.7 Repeat steps 6.4 through 6.6 for all other stages of the Unistorm System.
- 6.8 Using a flood light inspect all surfaces, which can be seen, of the Unistorm System structure for wear (e.g., cracking, spalling, etc.). Report signs of degradation to the proper authorities (i.e., owner, municipality, etc.).
- 6.9 Refill the Unistorm System, with clean water, to the inlet/outlet pipe invert elevation.
- 6.10 Properly dispose of the waste removed from Unistorm System as prearranged

# 7.0 SECURING THE AREA

- 7.1 Verify that no personnel, tools or equipment are in the Unistorm System structure.
- 7.2 Inspect the cast iron access frames and covers for damage (e.g., cracks, excessive wear, etc.).
- 7.3 Clear the cast iron access frames of any extraneous material and carefully replace the cast iron vented covers using proper lifting and rigging equipment. Verify that the covers are properly seated.
- 7.4 Remove the site set-up (tools, equipment, etc.) and verify the work area has been returned to its pre-work condition.



7.5 Complete an inventory of all tools and equipment used for this work, accounting for lost, damaged, or stolen tools or equipment.

# 8.0 RECORD KEEPING

- 8.1 Maintenance is a very important aspect in keeping the Unistorm System performance up to par. The attached "UNISTORM SYSTEM MAINTENANCE DATA SHEET" is provided and should be used to document the maintenance performed on the Unistorm System.
- 8.2 Provide a copy of the "UNISTORM SYSTEM MAINTENANCE DATA SHEET" to the owner, required government agencies, and Environment 21, LLC (P.O. Box 55, East Pembroke, NY 14056-1055.



# **UNISTORM SYSTEM MAINTENANCE DATA SHEET**

STRUCTURE NO.:\_\_\_\_\_

LOCATION:\_\_\_\_\_

OWNER:\_\_\_\_\_

UNISTORM MODEL\_\_\_\_\_

DATE INSTALLED:\_\_\_\_\_

MUNICIPALITY:\_\_\_\_\_

| DATE | SEDIMENT PILE<br>DEPTH | OIL SHEEN<br>YES/NO | FLOATABLE<br>DEPTH | PUMPOUT REQ.<br>YES/NO | SAMPLED<br>YES/NO | SAMPLE<br>RESULTS |
|------|------------------------|---------------------|--------------------|------------------------|-------------------|-------------------|
|      |                        |                     |                    |                        |                   |                   |
|      |                        |                     |                    |                        |                   |                   |
|      |                        |                     |                    |                        |                   |                   |
|      |                        |                     |                    |                        |                   |                   |

# PUMPOUT DATA (IF APPLICABLE)

|      | SEDIMENT<br>VOLUME | FLOATABLES<br>VOLUME | SEDIMENT/FLOATABLE<br>DISPOSAL INFORMATION: |              |  |
|------|--------------------|----------------------|---------------------------------------------|--------------|--|
| DATE | REMOVED            | REMOVED              | WHERE DISPOSED                              | HOW DISPOSED |  |
|      |                    |                      |                                             |              |  |
|      |                    |                      |                                             |              |  |
|      |                    |                      |                                             |              |  |



# PRIOR TO START OF WORK

| OWNER NOTIFIED AS REQUIRED.                             |                           |
|---------------------------------------------------------|---------------------------|
| GOVERNMENT AGENCIES NOTIFIED AS REQUIRED.               |                           |
| DISPOSAL SITE CONTACTED (IF PUMPOUT IS REQUIRED.)       |                           |
| ALL REQUIRED PPE, TOOLS, AND EQUIPMENT ARE AVAILABLE AN | ND IN GOOD WORKING ORDER. |
| AFTER WORK COMPLETION                                   |                           |
| ANY SIGNS OF WEAR NOTED AND REPORTED IF NECESSARY       |                           |
| UNISTORM SYSTEM HAS BEEN FILLED WITH CLEAN WATER        |                           |
| ALL CAST IRON COVERS HAVE BEEN PROPERLY REPLACED.       |                           |
| NO HAZARDOUS CONDITIONS EXIST AS A RESULT OF THE MAINT  | ENANCE WORK.              |
| ALL PPE, TOOLS, AND EQUIPMENT HAVE BEEN INVENTORIED AN  | D REMOVED FROM THE SITE.  |
| THE WORK AREA HAS BEEN RETURNED TO A SAFE PRE-WORK C    | CONDITION.                |
| ALL NOTIFICATIONS HAVE BEEN MADE, AS REQUIRED, THAT THE | WORK IS COMPLETED.        |
| DATE: SIGNATURE:                                        |                           |



# ATTACHMENT F

# METLER-TOLEDO PRODUCTION CERTIFICATE



Identification of the instrument

Type definition number of platform

Type definition number of terminal

Software version of platform

Software version of terminal

Model

Country version

Serial number

XS4002S US 1128203410 17.33.5.965.490 4.23 10.28.0.389.142 4.10

Weighing range(s)

Maximum capacity Max1= 4100 g Max2= \_\_\_\_

Readability d1= 0.01 g d2=

|     | Verification   |
|-----|----------------|
|     | scale interval |
| e1= | _              |
| e2= | _              |
|     |                |

and the second state of the second

OIML accuracy class



sht lighten (head light

Termperature Air pressure (QFE) Relative humidity

#### Technical Specifications

Stamp and Signatures

Chion Ce

| Repeatability (sd) | <b>0.008</b> g |
|--------------------|----------------|
| Sensitivity offset | 0.0015 %       |
| Eccentric load     | <b>0.03</b> g  |
| Linearity          | <b>0.02</b> g  |

METTLER TOLEDO is certified according to ISO 9001

and ISO 14001. The above mentioned balance was produced and metrologically tested by Mettler-Toledo AG. The test results have been found to comply with technical product specifications. We hereby declare that the balance is in conformity with all applicable directives and standards.

Head of Production D. Steinegger

D. Tig

Director Sales & Marketing S. v. Wangenheim

5.0.65

Within tolerance

 $\overline{\mathbf{A}}$ 

 $\overline{\mathbf{N}}$ 

 $\mathbf{\Lambda}$ 

 $\mathbf{N}$ 

© Mettler-Toledo AG 2005-06

11780593C Printed in Switzerland 0508/40.12

Version 1.20

Mettler-Toledo AG, Laboratory & Weighing Technologies, CH-8606 Greifensee, Switzerland Phone +41-44-944 22 11, Fax +41-44-944 30 60, Internet: http://www.mt.com



# ATTACHMENT G

# BLUE – WHITE DIGIFLO DIGITAL PADDLEWHEEL METERS



#### Features:

EN CONTRACTOR OF

- High accuracy digital paddlewheel technology.
- 3/8", 1/2", 3/4", 1", 1-1/2", and 2" male pipe threads.
- Flow rate from .4 to 200 GPM
- Tamper proof factory programming.

#### Specifications:

### **Materials of Construction:**

Pipe fitting: .....Polypropylene (options: PVDF) Sensor, paddlewheel, axle: ..PVDF

### **Installation Requirements:**

#### **Minimum Straight Pipe Length Requirements**

The meter's accuracy is affected by disturbances such as pumps, elbows, tees, valves, etc., in the flow stream. Install the meter in a straight run of pipe as far as possible from any disturbances. The distance required for accuracy will depend on the type of disturbance.

| Type Of Disturbance      | Minimum Inlet Pipe Length | Minimum Outlet Pipe Length |
|--------------------------|---------------------------|----------------------------|
| Flange                   | 10 X Pipe I.D.            | 5 X Pipe I.D.              |
| Reducer                  | 15 X Pipe I.D.            | 5 X Pipe I.D.              |
| 90° Elbow                | 20 X Pipe I.D.            | 5 X Pipe I.D.              |
| Two Elbows -1 Direction  | 25 X Pipe I.D.            | 5 X Pipe I.D.              |
| Two Elbows -2 Directions | 40 X Pipe I.D.            | 5 X Pipe I.D.              |
| Pump Or Gate Valves      | 50 X Pipe I.D.            | 5 X Pipe I.D.              |

• Easy to read 6 digit LCD display, up to 4 decimal places.

- Battery operated (2 AAA batteries included).
- Very low pressure drop.
- Total reset function can be disabled.

Sensor O-ring seals: ......Viton<sup>\*</sup> (optional EP) Enclosure: .....ABS



#### **Mounting location**

- The meter is designed to withstand outdoor conditions. A cool, dry location, where the unit can be easily serviced is recommended.
   The meter can be mounted on horizontal or vertical runs of pipe. Mounting at the vertical (twelve o'clock) position on horizontal pipe is recommended. Mounting anywhere around the diameter of vertical pipe is acceptable, however, the pipe must be completely full of water
- at all times. Back pressure is essential on downward flows. See the minimum straight length of pipe requirement chart above.
- The meter can accurately measure flow from either direction.

### **DigiFlo Digital Paddlewheel Meters**

### **Dimensions:**



### Flow Stream Requirements:

Measuring accuracy requires a fully developed turbulent flow profile. Pulsating, swirling and other disruptions in the flow stream will effect accuracy. Flow conditions with a Reynolds Number greater than 4000 will result in a fully developed turbulent flow. A Reynolds Number less than 2000 is laminar flow and may result in inaccurate readings.



# Pipe Size, Flow Range and Display Model Options:

**Models with Polypropylene Pipe Fitting Material** 

|           |           | GPM           | MODELS        |               |           | LPM           | MODELS        |               |
|-----------|-----------|---------------|---------------|---------------|-----------|---------------|---------------|---------------|
| Pipe Size | GPM       | RATE ONLY     | TOTAL ONLY    | RATE & TOTAL  | LPM       | RATE ONLY     | TOTAL ONLY    | RATE & TOTAL  |
| M/NPT     | Range     | Model Number  | Model Number  | Model Number  | Range     | Model Number  | Model Number  | Model Number  |
| 3/8"      | .8 to 8   | RB-375MI-GPM1 | TB-375MI-GPM1 | RT-375MI-GPM1 | 3 to 30   | RB-375MI-LPM1 | TB-375MI-LPM1 | RT-375MI-LPM1 |
| 3/8"      | .4 to 4   | RB-375MI-GPM2 | TB-375MI-GPM2 | RT-375MI-GPM2 | 1 to 10   | RB-375MI-LPM2 | TB-375MI-LPM2 | RT 375MI-LPM2 |
| 1/2"      | 2 to 20   | RB-500MI-GPM1 | TB-500MI-GPM1 | RT-500MI-GPM1 | 7 to 70   | RB-500MI-LPM1 | TB-500MI-LPM1 | RT-500MI-LPM1 |
| 1/2*2     | .5 to 5   | RB-500MI-GPM2 | TB-500MI-GPM2 | RT-500MI-GPM2 | 2 to 20   | RB-500MI-LPM2 | TB-500MI-LPM2 | RT-500MI-LPM2 |
| 3/4"      | 3 to 30   | RB-750MI-GPM1 | TB-750MI-GPM1 | RT-750MI-GPM1 | 11 to 110 | RB-750MI-LPM1 | TB-750MI-LPM1 | RT-750MI-LPM1 |
| 3/4"      | 8 to 8    | RB-750MI-GPM2 | T8-750MI-GPM2 | RT-750MI-GPM2 | 3 to 30   | RB-750MI-LPM2 | TB-750MI-LPM2 | RT-750MI-EPM2 |
| 1"        | 5 to 50   | RB-100MI-GPM1 | TB-100MI-GPM1 | RT-100MI-GPM1 | 20 to 200 | RB-100MI-LPM1 | TB-100MI-LPM1 | RT-100MI-LPM1 |
|           | 2 to 20   | RB-100MI-GPM2 | TB-100MI-GPM2 | RT-100MI-GPM2 | 7 to 70   | RB-100MI-LPM2 | TB-100MFLPM2  | RT-100MI-LPM2 |
| 1-1/2"    | 4 to 40   | RB-150MI-GPM1 | TB-150MI-GPM1 | RT-150MI-GPM1 | 15 to 150 | RB-150MI-LPM1 | TB-150MI-LPM1 | RT-150MI-LPM1 |
| 1-1/2     | 6 to 60   | RB-150MI-GPM2 | TB-150MI-GPM2 | RT-150MI-GPM2 | 25 to 250 | RB-150MI-LPM2 | TB-150MI-LPM2 | RT-150MI-LPM2 |
| 1-1/2"    | 10 to 100 | RB-150MI-GPM3 | TB-150MI-GPM3 | RT-150MI-GPM3 | 40 to 400 | RB-150MI-LPM3 | TB-150MI-LPM3 | RT-150MI-LPM3 |
| 2         | 4 to 40   | RB-200MI-GPM1 | TB-200MI-GPM1 | RT-200MI-GPM1 | 15 to 150 | RB-200MI-LPM1 | TB-200MI-LPM1 | RT-200MI-LPM1 |
| 2"        | 6 to 60   | RB-200MI-GPM2 | TB-200MI-GPM2 | RT-200MI-GPM2 | 25 to 250 | RB-200MI-LPM2 | TB-200MI-LPM2 | RT-200MI-LPM2 |
| 23        | 10 to 100 | RB-200MI-GPM3 | TB-200MI-GPM3 | RT-200MI-GPM3 | 40 to 400 | RB-200MI-LPM3 | TB-200MI-LPM3 | RT-200MI-LPM3 |
| 2"        | 20 to 200 | RB-200MI-GPM4 | TB-200MI-GPM4 | RT-200MI-GPM4 | 70 to 700 | RB-200MI-LPM4 | TB-200MI-LPM4 | RT-200MI-LPM4 |

**Models with PVDF Pipe Fitting Material** 

| 3/8"   | .8 to 8   | RB-375FI-GPM1 | TB-375FI-GPM1 | RT-375FI-GPM1 | 3 to 30   | RB-375FI-LPM1 | TB-375EU PM1   | RT-375ELL PM1  |
|--------|-----------|---------------|---------------|---------------|-----------|---------------|----------------|----------------|
| 3/8"   | .4 to 4   | R8-375FI-GPM2 | TB-375FI-GPM2 | RT-375FI-GPM2 | 1 to 10   | RB-375FI-LPM2 | TB-375FI-LPM2  | RT-375ELLPM2   |
| 1/2"   | 2 to 20   | RB-500FI-GPM1 | TB-500FI-GPM1 | RT-500FI-GPM1 | 7 to 70   | R8-500FI-LPM1 | TB-500FI-I PM1 | RT-500FLLPM1   |
| 1/2    | 5 to 5    | RB-500FI-GPM2 | TB-500FI-GPM2 | RT-500FI-GPM2 | 2 to 20   | R8-500FI-LPM2 | TB-500FI-LPM2  | RT-500FI-I PM2 |
| 3/4"   | 3 to 30   | RB-750FI-GPM1 | TB-750FI-GPM1 | RT-750FI-GPM1 | 11 to 110 | RB-750FI-LPM1 | TB-750FI-LPM1  | RT-750FI-LPM1  |
| 3/4"   | .8 to 8   | RB-750FI-GPM2 | TB-750FI-GPM2 | RT-750FI-GPM2 | 3 to 30   | RB-750FI-LPM2 | TB-750FI-LPM2  | RT-750FI-1 PM2 |
| 1"     | 5 to 50   | RB-100FI-GPM1 | TB-100FI-GPM1 | RT-100FI-GPM1 | 20 to 200 | RB-100FI-LPM1 | TB-100FI-LPM1  | RT-100EL PM1   |
|        | 2 to 20   | RB-100FI-GPM2 | TB-100FI-GPM2 | RT-100FI-GPM2 | 7 to 70   | RB-100FI-LPM2 | TB-100FI-LPM2  | RT-100FI-LPM2  |
| 1-1/2" | 4 to 40   | RB-150FI-GPM1 | TB-150FI-GPM1 | RT-150FI-GPM1 | 15 to 150 | RB-150FI-LPM1 | TB-150FI-LPM1  | RT-150EI-I PM1 |
| 1-1/2" | 6 to 60   | RB-150FI-GPM2 | TB-150FI-GPM2 | RT-150FI-GPM2 | 25 to 250 | RB-150FI-LPM2 | TB-150FI-LPM2  | RT-150FI-LPM2  |
| 1-1/2" | 10 to 100 | RB-150FI-GPM3 | TB-150FI-GPM3 | RT-150FI-GPM3 | 40 to 400 | RB-150FI-LPM3 | TB-150FI-LPM3  | RT-150FI-LPM3  |
| 27     | 4 to 40   | RB-200FI-GPM1 | TB-200FI-GPM1 | RT-200FI-GPM1 | 15 to 150 | R8-200FI-LPM1 | TB-200FI-LPM1  | RT-200FI-I PM1 |
| 2"     | 6 to 60   | RB-200FI-GPM2 | TB-200FI-GPM2 | RT-200FI-GPM2 | 25 to 250 | RB-200FI-LPM2 | TB-200FI-LPM2  | RT-200FI-I PM2 |
| 2      | 10 to 100 | RB-200FI-GPM3 | TB-200FI-GPM3 | RT-200FI-GPM3 | 40 to 400 | RB-200FI-LPM3 | TB-200FI-LPM3  | RT-200FI-LPM3  |
| 2"     | 20 to 200 | RB-200FI-GPM4 | TB-200FI-GPM4 | RT-200FI-GPM4 | 70 to 700 | RB-200FI-LPM4 | TB-200FI-LPM4  | RT-200FI-LPM4  |



Blue-White 5300 Business Drive, Huntington Beach, CA 92649 Tel: 714-893-8529 Fax: 714-894-9492 www.blue-white.com Email: sales@blue-white.com

All trademarks are the property of their respective owners. Technical data sheet #85000-022 rev.080106



# ATTACHMENT H

# GOULDS PUMP WS\_B SERIES MODEL 3886

### Wastewater



# **Goulds Pumps**

WS\_B Series Model 3886 Submersible Sewage Pump

PROSURANCE AVAILABLE FOR RESIDENTIAL APPLICATIONS.



# FEATURES

- Impeller: Cast iron, semi-open, dynamically balanced, non-clog with pump out vanes for mechanical seal protection. Optional Silicon bronze impeller available.
- Casing: Cast iron volute type for maximum efficiency. Designed for easy installation on A10-20 guide rail or base elbow rail systems.
- Mechanical Seal: SILICON CARBIDE VS. SILICON CARBIDE sealing faces for superior abrasive resistance, stainless steel metal parts, BUNA-N elastomers.
- Shaft: Corrosion-resistant stainless steel. Threaded design. Locknut on all models to guard against component damage on accidental reverse rotation.
- Fasteners: 300 series stainless steel.
- Capable of running dry without damage to components.
- Designed for continuous operation when fully submerged.



Goulds Pumps is a brand of ITT Corporation.

www.goulds.com

# Engineered for life

### AGENCY LISTINGS



Tested to UL 778 and CSA 22.2 108 Standards By Canadian Standards Association File #LR38549

Goulds Pumps is ISO 9001 Registered.



### GOULDS PUMPS Wastewater

#### **APPLICATIONS**

Specifically designed for the following uses:

- Homes
- Sewage systems
- Dewatering/Effluent
- Water transfer

#### **SPECIFICATIONS**

#### Pump:

- · Solids handling capabilities: 2" maximum.
- Discharge size: 2" NPT.
- · Capacities: up to 185 GPM.
- Total heads: up to 38 feet TDH.
- Temperature: 104°F (40°C) continuous, 140°F (60°C) intermittent.

#### MOTORS

- Fully submerged in high grade turbine oil for lubrication and efficient heat transfer. All ratings are within the working limits of the motor.
- Class B insulation.

#### Single phase (60 Hz):

- All single phase models feature capacitor start motors for maximum starting torque.
- Built-in overload with automatic reset.
- SJTOW or STOW severe duty oil and water resistant power cords.
- $\frac{1}{2}$  1 HP models have NEMA three prong grounding plugs.

#### Three phase (60 Hz):

- Class 10 overload protection must be provided in separately ordered starter unit.
- STOW power cords all have bare lead cord ends.
- Bearings: Upper and lower heavy duty ball bearing construction.
- Designed for Continuous Operation: Pump ratings are within the motor manufacturer's recommended working limits, can be operated continuously without damage when fully submerged.
- Power Cable: Severe duty rated, oil and water resistant. Epoxy seal on motor end provides secondary moisture barrier in case of outer jacket damage and to prevent oil wicking. Standard cord is 20<sup>t</sup>. Optional lengths are available.
- Motor Cover O-ring: Assures positive sealing against contaminants and oil leakage.



### **GOULDS PUMPS** Wastewater

### MODELS

| ORDER   | НР       | PHASE | VOLTS | RDM     | IMPELLER   | MAX.            | 1 DA | KVA  | FULL LOAD  | RES   | STANCE    | WT.    |     |   |
|---------|----------|-------|-------|---------|------------|-----------------|------|------|------------|-------|-----------|--------|-----|---|
| NUMBER  |          | THAT  | YOUIS | 111 111 | DIA. (in.) | AMPS            |      | CODE | MOTOR EFF. | START | LINE-LINE | (LBS.) |     |   |
| WS0311B | <u> </u> |       | 115   |         |            | 10.7            | 30.0 | M    | 54         | 11.9  | 1.7       |        |     |   |
| WS0318B | 0.33     |       | 208   |         | 4.69       | 6.8             | 19.5 | K    | 51         | 9.1   | 4.2       | 63     |     |   |
| WS0312B |          | 1     | 230   |         |            | 4.9             | 14.1 | L    | 53         | 14.5  | 8.0       |        |     |   |
| WS0511B |          |       | 115   |         |            | 14.5            | 31.1 | J    | 55         | 9.3   | 1.4       |        |     |   |
| WS0518B |          |       | 208   |         |            | 8.0             | 19.5 | K    | 51         | 9.1   | 4.2       |        |     |   |
| WS0512B |          |       | 230   |         |            | 7.3             | 16.5 | J    | 54         | 11.7  | 5.6       | -      |     |   |
| WS0538B | 0.5      |       | 200   |         | 5.00       | 3.8             | 12.3 | K    | 75         | NA    | 6.7       | 65     |     |   |
| WS0532B |          | 3     | 230   |         |            | 3.3             | 9.7  | К    | 75         | NA    | 9.9       |        |     |   |
| WS0534B |          | -     | 460   |         |            | 1.7             | 4.9  | К    | 75         | NA    | 39.4      |        |     |   |
| WS0537B |          |       | 575   |         |            | 1.4 4.3 K 68 NA | NA   | 47.8 |            |       |           |        |     |   |
| WS0718B |          | 1     | 208   | 1750    |            | 11.0            | 39.0 | К    | 65         | 2.6   | 1.4       |        |     |   |
| WS0712B |          |       | 230   |         |            | 9.4             | 24.8 | l    | 57         | 4.8   | 2.3       |        |     |   |
| WS0738B | 0.75     |       | 200   |         | 5 38       | 4,1             | 21.2 | Н    | 74         | NA    | 4.3       |        |     |   |
| WS0732B |          | 3     | 230   | 230     |            |                 | 3,30 | 3.6  | 17.3       | J     | 76        | NA     | 5.6 | - |
| WS0734B |          | -     | 460   |         |            | 1.8             | 8.9  | J    | 76         | NA    | 22.4      |        |     |   |
| WS0737B |          |       | 575   |         |            | 1.5             | 7.3  | J    | 71         | NA    | 29.2      | ΦE     |     |   |
| WS1018B |          | 1     | 208   |         |            | 14.0            | 39.0 | K    | 65         | 2.6   | 1.4       | 0.1    |     |   |
| W51012B |          |       | 230   | İ       |            | 12.3            | 30.5 | H    | 60         | 4.3   | 1.8       | [      |     |   |
| WS1038B | 1        |       | 200   |         | 5.75       | 6.0             | 21.2 | Н    | 74         | NA    | 4.3       |        |     |   |
| WS1032B |          | 3     | 230   |         | 2.1.2      | 5.8             | 17.3 | J    | 76         | NA    | 5.6       |        |     |   |
| WS1034B |          | -     | 460   |         |            | 2.9             | 8.9  | J    | 76         | NA    | 22.4      |        |     |   |
| WS1037B |          |       | 575   |         |            | 2,4             | 7.3  | J    | 71         | NA    | 29.2      |        |     |   |





### Wastewater

#### **PERFORMANCE RATINGS** (gallons per minute)

| Orde         | r No.      | WS03B | WS05B | WS07B | WS10B |
|--------------|------------|-------|-------|-------|-------|
|              | HP ▶ ½ ½ ¾ |       | 3/4   | 1     |       |
|              | RPM 🕨      | 1750  | 1750  | 1750  | 1750  |
|              | 10 🕨       | 80    | 122   | 145   | 183   |
| tter<br>t    | 15         | 36    | 90    | 116   | 152   |
| f Wa         | 20         | -     | 50    | 86    | 123   |
| otal<br>et o | 25         | _     | -     | 48    | 95    |
| - £          | 30         | -     | -     | -     | 58    |
|              | 35         |       | _     | _     | 20    |

#### **COMPONENTS** (for reference only)

| item No. | Description     | · · · · · · · |
|----------|-----------------|---------------|
| 1        | Impeller        |               |
| 2        | Casing          |               |
| 3        | Mechanical Seal |               |
| 4        | Motor Shaft     |               |
| 5        | Motor           |               |
| 6        | Ball Bearings   |               |
| 7        | Power Cable     |               |
| 8        | Casing O-Ring   |               |

#### DIMENSIONS

(All dimensions are in inches. Do not use for construction purposes.)





NOTE: For specific parts breakdown, see repair parts.



Goulds Pumps and the ITT Engineered Blocks Symbol are registered trademarks and tradenames of ITT Corporation.

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

**B3886 March, 2007** © 2007 ITT Corporation





# **ATTACHMENT I**

# HAMMOND GLOBE VALVE IB418

# GLOBE IB418 BRONZE

125 lb. SWP-200 lb. WOG† • Plumbing and Heating Bronze Disc • Threaded Bonnet • Sweat Ends

3/8" and 1/2" sizes have the disc integral with the stem and have no disc ring.

SPECIFICATIONS



#### Conforms to: MSS SP-80. Type 1, IB418 Class 125, Soldered Ends. MATERIAL LIST NO. PART MATERIAL SPECIFICATION 1 Body Bronze ASTM B 62 2 Bonnet Bronze ASTM B 62 3 Disc Bronze ASTM B 62 4 Stem Bronze ASTM B 62 ASTM B 16 5 Disc Ring Brass 3/4" to 2" Incl. 6 Packing Non-Asbestos Commercial 7 Packing Nut Brass Commercial 8 Handwheel Mail. Iron Commercial 9 Identification Plate Aluminum Commercial 10 Handwheel Nut Brass Commercial

|        | DI    | MENSIONS | - INCHES | / MILIMETE | RS    |       | ]     |
|--------|-------|----------|----------|------------|-------|-------|-------|
| Units  | Size  | A        | В        | C          | D     | E     | Cv    |
| inches | 3/8   | 2.00     | 3.19     | 2.00       | 0.38  | 1.25  | 0.04  |
| mm     | 9.53  | 50.80    | 80.98    | 50.80      | 9.53  | 31.75 | 0.61  |
| Inches | 1/2   | 2.44     | 3.75     | 2.25       | 0.50  | 1.44  | 1.10  |
| mm     | 12,70 | 61.91    | 95.25    | 57.15      | 12.70 | 36.53 | 1.16  |
| Inches | 3/4   | 3.19     | 4.00     | 2.50       | 0.75  | 1.69  | 0.01  |
| mm     | 19.05 | 80.98    | 101.60   | 63.50      | 19.05 | 42.88 | 2,21  |
| Inches | 1     | 3.69     | 4.38     | 2.75       | 0.91  | 1.88  | 2.64  |
| mm     | 25,40 | 93.66    | 111.13   | 69.85      | 23.01 | 47.63 | 3.64  |
| Inches | 1 1/4 | 4.19     | 5.13     | 3.13       | 0.97  | 2.25  | 0.05  |
| mm     | 31.75 | 106,38   | 130.18   | 79,38      | 24.61 | 57.15 | 0.05  |
| Inches | 1 1/2 | 4.75     | 5.63     | 3.50       | 1.09  | 2.56  | 11 10 |
| mm     | 38.10 | 120.65   | 142.88   | 88.90      | 27.79 | 65.10 | 11.10 |
| Inches | 2     | 5.94     | 6.69     | 4.00       | 1.34  | 3.25  | 00.00 |
| mm     | 50.80 | 150.83   | 169.88   | 101.60     | 34.13 | 82.55 | 20.00 |

† Non-Shock

BETTER AT EVERY TURN

Rev. 2



The information presented on this sheet is correct at the time of publication. Hammond Valve reserves the right to change design, and/or material specifications without notice. For the most current information access www.hammondvalve.com

www.hammondvalve.com



# ATTACHMENT J

# ROSEDALE HIGH CAPACITY FILTER BAGS

# Filter Bags for Rosedale Bag Filters

Fits All Rosedale Filter Housings

#### **Construction** Felt Bags-Standard Grade

Felt construction is generally chosen where smaller particle retention is required, in the nominal 1 to 100 micron range. It offers higher solids loading capacity than mesh. General-purpose felt bags are offered in polyester and polypropylene materials. Special-purpose felt bags are offered in polyester and polypropylene materials. Special-purpose felt bags include high temperature service ( to 500°F) bags of Nomex<sup>®</sup> nylon or Teflon<sup>®</sup>.

# WHATTAN WERE AN WANTAN

#### Mesh Bags

Mesh is a woven construction, generally used where micron ratings of 50 to 800 are required.

Two types are offered. The **multifilament** mesh is a low cost, disposable material offered in polyester. **Monofilament** mesh has higher strength, and is available in nylon. (It should be considered cleanable.)



#### Oil Adsorption Bags

For removal of free oil, bags made of polypropylene microfibers, known as oil-adsorb, are available. A size 2 oil-adsorb bag will remove approximately a half-pound of oil from a water-oil liquid. It is only available with a 25 micron rating. If finer filtration is needed in an oil removal task, or high volume oil removal is required, Rosedale's Sorbent Containment Systems are available and information is located on page 101.



#### Melt Blown Media (Microfiber)

Polypropylene melt blown media offers unparalleled adsorption capacity for the removal of hydrocarbon contaminates from liquid streams. The melt blown media is also the heart of the high efficiency filter bag. The small diameter fibers create the bag's ability to remove fine particulate at high efficiencies. Fiber diameter is important because the pore size is a function of fiber diameter, density of fibers, and thickness of materials.



#### Felt Bag Finishes and Covers Standard finish. Plain, as manufactured, without treatment or covers.

**Glazed finish.** The outer most surface fibers are melted by a momentary application of high heat. This bonds the fibers together and reduces the possibility of fiber migration.

**Mesh covers** completely encase the felt bag. This cover acts to contain any fibers that may separate from the filter bag. Materials available in mono and multifilament mesh, spun bonded nylon and polyester.

### Pressure Drop Data

The graph shows pressure drop through clean filter bag media of various micron ratings. The curves do not consider pressure drop through the filter housing.



### **Bag Size Correction**

To obtain pressure drop correction for a specific bag size, divide the pressure drop obtained from the graph by the area of the bag.

# **Viscosity Correction**

If viscosity is higher than one, multiply the corrected pressure drop as obtained above by the appropriate viscosity correction factor.

| Bag Size  | Surface Area<br>(sq. ft.) | Viscosity<br>(cps) | Correction<br>Factor |
|-----------|---------------------------|--------------------|----------------------|
|           |                           | 50                 | 4.5                  |
|           |                           | 100                | 8.3                  |
| 1         | 2.0                       | 200                | 16.6                 |
| 1 (inner) | 1.6                       | 400                | 27.7                 |
| 2         | 4.4                       | 800                | 50.0                 |
| 2 (inner) | 3.6                       | 1000               | 56.2                 |
| 3         | 0.5                       | 1500               | 77.2                 |
| 4         | 1.0                       | 2000               | 113.6                |
| 7         | 1.8                       | 4000               | 161.0                |
| 8         | 2.0                       | 6000               | 250.0                |
| 9         | 3.4                       | 8000               | 325.0                |
| 12        | 5.6                       | 10000              | 430.0                |

#### Standard Fibers And Micron Ratings Available Micron Ratings

| Construction                                      | Fiber                                                          | 1 | 3 | 5 | 10 | 15 | 25 | 50 | 75 | 100 | 125 | 150 | 175 | 200 | 250 | 300 | 400 | 600 | 800 |
|---------------------------------------------------|----------------------------------------------------------------|---|---|---|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Felts                                             | Polyester<br>Oil-Adsorb (pp)<br>Polypropylene<br>Nomex (Nylon) | • | • | • | •  | •  | •  | •  | •  | •   |     |     |     | •   |     |     |     |     |     |
| Multifilament<br>Meshes<br>Monofilament<br>Meshes | Polyester<br>Nylon<br>Polypropylene<br>Nylon                   |   |   |   | •  |    |    |    | •  | :   | •   |     |     | •   | •   | •   | •   | •   | •   |

#### Compatibility and Temperature Limits For Standard Bag Materials\* Compatibility With

| Fiber                                                        | Organic<br>Solvents                                           | Animal<br>Vegetable<br>& Petro Oils                           | Micro-<br>Organisms                                           | Alkalies                                       | Organic<br>Acids                               | Oxidizing<br>Agents                       | Mineral<br>Acids                          | Temperature<br>Limitations<br>(max. deg. F) |
|--------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------------|
| Polyester<br>Polypropylene<br>Nylon<br>Nomex Nylon<br>Teflon | Excellent<br>Excellent<br>Excellent<br>Excellent<br>Excellent | Excellent<br>Excellent<br>Excellent<br>Excellent<br>Excellent | Excellent<br>Excellent<br>Excellent<br>Excellent<br>Excellent | Good<br>Excellent<br>Good<br>Good<br>Excellent | Good<br>Excellent<br>Fair<br>Fair<br>Excellent | Good<br>Good<br>Poor<br>Poor<br>Excellent | Good<br>Good<br>Poor<br>Poor<br>Excellent | 325<br>225<br>325<br>450<br>500             |
| * Chart is to be used as                                     | a guide. User shoe                                            | uld make tests with specif                                    | ic media to assure com                                        | patibility                                     |                                                |                                           |                                           | 000                                         |

| Filter Bag Sizes              |           |                    |                      |                           |                         |  |  |  |  |
|-------------------------------|-----------|--------------------|----------------------|---------------------------|-------------------------|--|--|--|--|
| Used on Rosedale<br>Model No. | Bag Size  | Length<br>(inches) | Diameter<br>(inches) | Surface Area<br>(sq. ft.) | Bag Volume<br>(gallons) |  |  |  |  |
| 4-6                           | 3         | 8                  | 4.12                 | 0.5                       | 0.5                     |  |  |  |  |
| 4-12                          | 4         | 14                 | 4.12                 | 1.0                       | 1.0                     |  |  |  |  |
| 6-12                          | 7         | 15                 | 5.62                 | 13                        | 1.3                     |  |  |  |  |
| 6-18                          | 8         | 21                 | 5.62                 | 2.0                       | 1.5                     |  |  |  |  |
| 6-30                          | 9         | 32                 | 5.62                 | 3.4                       | 2.8                     |  |  |  |  |
| 8-15                          | 1         | 16.5               | 7.06                 | 20                        | 2.0                     |  |  |  |  |
|                               | 1 (inner) | 14.5               | 5 7 5                | 1.6                       | 17                      |  |  |  |  |
| 8-30                          | 2         | 32                 | 7.06                 | 4.4                       | 1.7                     |  |  |  |  |
| and 16 thru 36                | 2 (inner) | 30                 | 575                  | 36                        | 3.8                     |  |  |  |  |
| LCO                           | 12        | 32                 | 8.37                 | 5.6                       | 6.0                     |  |  |  |  |

# R Haw To Order

Build an ordering code as shown in this example. Micron ratings are nominally rated - see page 000 for absolute crossover rating.

| FIBER AND MICRON RATINGS                                                                                           | ADDITIONAL OPTIONS<br>SS = Stainless steel ring                   |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 50, 75, 100, 200                                                                                                   | BAG STYLE                                                         |
| Felt, polypropylene = PO<br>Microns: 1, 3, 5, 10, 25, 50, 100                                                      | BAG DIMENSIONS                                                    |
| Felt, Oil-Adsorb, 25-micron = OA 25                                                                                | Symbol (in.) (in.) Model                                          |
| Felt, Nomex = HT<br>Microns: <b>5, 10, 25, 50, 100</b>                                                             | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$              |
| Felt Teflon, 10-micron = <b>TE 10</b>                                                                              | <b>7</b> = 5 5/8 x 15 6 12<br><b>8</b> = 5 5/8 x 21 6 18          |
| Mesh, monofilament = <b>NMO</b><br>Microns: <b>5,10, 25, 50, 75, 100,</b>                                          | <b>9</b> = 5-5/8 x 32 6-30<br><b>12</b> = 8-3/8 x 32 LCO          |
| 125, 150, 175, 200, 250,<br>300, 400, 600, 800                                                                     | P = None (standard)                                               |
| Mesh, monofilament polypropylene = <b>PMO</b><br>Microns: <b>300, 600</b>                                          | finish<br><b>C</b> = Spun-bonded nylon<br>cover (Cerex)           |
| Mesh, multifilament polyester = <b>PEM</b><br>Microns: <b>75, 100, 125, 150, 200,</b><br><b>250, 300, 400, 800</b> | <ul> <li>R = Spun-bonded poly-<br/>ester (Remay) cover</li> </ul> |

#### Inner Bags for Model 8 or Multibag Filters

.

To order inner bags, use a second, separate ordering code. It should be built using the system shown above, but prefixed by the symbol "IN". **Example: IN-PE 25 P 2 S-SS** 



# ATTACHMENT K

# ADVANTECH CERTIFICATES OF COMPLIANCE
## to specifications of

# ASTM - American Society for Testing and Materials ANSI - American National Standards Institute ISO - International Standards Organization

This is to certify that the openings in the wire cloth of this test sieve have been checked through advanced optical technology to assure conformity to ASTM Specification E-11.

The dimensions of the test sieve frame have also been checked with precision gauges to **70BS8F368772** assure conformity to these specifications. ISSUE DATE: 3/28/2007

MANUFACTURED IN THE U.S.A. BY ADVANTECH MANUFACTURING

# CERTIFICATE OF COMPLIANCE

# to specifications of

# ASTM - American Society for Testing and Materials ANSI - American National Standards Institute ISO - International Standards Organization

This is to certify that the openings in the wire cloth of this test sieve have been checked through advanced optical technology to assure conformity to ASTM Specification E-11.

The dimensions of the test sieve frame have also been checked with precision gauges to assure conformity to these specifications. 100BS8F374108

ISSUE DATE: 5/10/2007

MANUFACTURED IN THE U.S.A. BY ADVANTECH MANUFACTURING

## to specifications of

#### ASTM – American Society for Testing and Materials

#### ANSI – American National Standards Institute

#### ISO – International Standards Organization

This is to certify that the openings in the wire cloth of this test sieve have been checked through advanced optical technology to assure conformity to ASTM Specification E-11.

The dimensions of the test sieve frame have also been checked with precision gauges to assure conformity to these specifications. 120BS8F382523

ISSUE DATE: 9/14/2007

MANUFACTURED IN THE U.S.A. BY ADVANTECH MANUFACTURING

## **CERTIFICATE OF COMPLIANCE**

### to specifications of

#### ASTM - American Society for Testing and Materials

#### ANSI - American National Standards Institute

#### ISO - International Standards Organization

This is to certify that the openings in the wire cloth of this test sieve have been checked through advanced optical technology to assure conformity to ASTM Specification E-11.

The dimensions of the test sieve frame have also been checked with precision gauges to 140BS8F368780 assure conformity to these specifications. ISSUE DATE: 5/15/2007

### to specifications of

#### ASTM – American Society for Testing and Materials

### ANSI – American National Standards Institute

#### ISO – International Standards Organization

This is to certify that the openings in the wire cloth of this test sieve have been checked through advanced optical technology to assure conformity to ASTM Specification E-11.

The dimensions of the test sieve frame have also been checked with precision gauges to assure conformity to these specifications. 170BS8F388656

ISSUE DATE: 9/19/2007

MANUFACTURED IN THE U.S.A. BY ADVANTECH MANUFACTURING

## **CERTIFICATE OF COMPLIANCE**

### to specifications of

#### ASTM - American Society for Testing and Materials

#### ANSI - American National Standards Institute

#### ISO - International Standards Organization

This is to certify that the openings in the wire cloth of this test sieve have been checked through advanced optical technology to assure conformity to ASTM Specification E-11.

The dimensions of the test sieve frame have also been checked with precision gauges to 200BS8F381164 assure conformity to these specifications. ISSUE DATE: 7/24/2007

MANUFACTURED IN THE U.S.A. BY ADVANTECH MANUFACTURING

## to specifications of

## ASTM – American Society for Testing and Materials

#### ANSI – American National Standards Institute

#### ISO – International Standards Organization

This is to certify that the openings in the wire cloth of this test sieve have been checked through advanced optical technology to assure conformity to ASTM Specification E-11.

The dimensions of the test sieve frame have also been checked with precision gauges to assure conformity to these specifications.

MANUFACTURED IN THE U.S.A. BY ADVANTECH MANUFACTURING

270BS8F385931 ISSUE DATE: 9/14/2007



# ATTACHMENT L

# **U.S. SILICA PRODUCT DATA**



OK-110

**UNGROUND SILICA** 

PLANT: MILL CREEK, OKLAHOMA



|                    |             | TYPICAL VALUES |            |            |  |
|--------------------|-------------|----------------|------------|------------|--|
| USA STD SIEVE SIZE |             | % RETAINED     |            | % PASSING  |  |
| MESH               | MILLIMETERS | INDIVIDUAL     | CUMULATIVE | CUMULATIVE |  |
| 70                 | 0.212       | 0.0            | 0.0        | 100.0      |  |
| 100                | 0.150       | 1.0            | 1.0        | 99.0       |  |
| 120                | 0.125       | 15.0           | 16.0       | 84.0       |  |
| 140                | 0.106       | 48.0           | 64.0       | 36.0       |  |
| 170 `              | 0.088       | 24.2           | 88.2       | 11.8       |  |
| 200                | 0.075       | 9.7            | 97.9       | 2.1        |  |
| 270                | 0.053       | 1.9            | 99.8       | 0.2        |  |
| PAN                |             | 0.2            | 100.0      | 0.0        |  |

## TYPICAL PHYSICAL PROPERTIES

| AFS <sup>(1)</sup> ACID DEMAND (@pH 7) | 0.5   |
|----------------------------------------|-------|
| AFS <sup>(</sup> GRAIN FINENESS        | 119   |
| COLOR                                  | WHITE |
| GRAIN SHAPE                            | ROUND |
| HARDNESS (Mohs)                        | 7     |
| (1) AMERICAN FOUNDRYMEN'S SOCIETY      |       |

| MELTING POINT (Degrees F) | 3100  |
|---------------------------|-------|
| MINERAL QUA               | ARTZ  |
| MOISTURE CONTENT (%)      | <0.2  |
| pH                        | . 7.2 |
| SPECIFIC GRAVITY          | 2.65  |

# TYPICAL CHEMICAL ANALYSIS, %

| SiO <sub>2</sub> (Silicon Dioxide)              | . 99.6 |
|-------------------------------------------------|--------|
| Fe <sub>2</sub> O <sub>3</sub> (Iron Oxide)     | 0.018  |
| Al <sub>2</sub> O <sub>3</sub> (Aluminum Oxide) | . 0.10 |
| TiO <sub>2</sub> (Titanium Dioxide)             | <0.01  |
| CaO (Calcium Oxide)                             | <0.01  |

| MgO (Magnesium Oxide)            | <0.01  |
|----------------------------------|--------|
| Na <sub>2</sub> O (Sodium Oxide) | <0.01  |
| K₂O (Potassium Oxide)            | . 0.05 |
| LOI (Loss On Ignition)           | 0.1    |

**DISCLAIMER**: The information set forth in this Product Data Sheet represents typical properties of the product described; the information and the typical values are not specifications. U.S. Silica Company makes no representation or warranty concerning the Products, expressed or implied, by this Product Data Sheet.

<u>WARNING</u>: The product contains crystalline silica - quartz, which can cause silicosis (an occupational lung disease) and lung cancer. For detailed information on the potential health effect of crystalline silica - quartz, see the U.S. Silica Company Material Safety Data Sheet.

U.S. Silica Company

P.O. Box 187, Berkeley Springs, WV 25411-0187

(304) 258-2500



# ATTACHMENT M

# LAB MODEL PICTURES







# SCALE MODEL DURING NO SCOUR AND NO RE-SUSPENSION TEST

# **NOTE: NO RE-SUSPENSION IS EVIDENT**







SCALE MODEL DURING HYDROCARBON TEST







# SCALE MODEL INLET AFTER HYDROCARBON TEST







SCALE MODEL RIGHT AFTER TSS CAPTURE TEST





# METLER-TOLEDO SCALE USED FOR CALIBRATION/TESTING







# SCALE MODEL AFTER HYDROCARBON TEST